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Abstract: Item parameter drift (IPD) is the systematic differentiation of parameter 

values of items over time due to various reasons. If it occurs in computer adaptive 

tests (CAT), it causes errors in the estimation of item and ability parameters. 

Identification of the underlying conditions of this situation in CAT is important for 

estimating item and ability parameters with minimum error. This study examines 

the measurement precision of IPD and its impacts on the test information function 

(TIF) in CAT administrations. This simulation study compares sample size (1000, 

5000), IPD size (0.00 logit, 0.50 logit, 0.75 logit, 1.00 logit), percentage of items 

containing IPD (0%, 5%, 10%, 20%), three time points and item bank size (200, 

500, 1000) conditions. To examine the impacts of the conditions on ability 

estimations; measurement precision, and TIF values were calculated, and factorial 

analysis of variance (ANOVA) for independent samples was carried out to examine 

whether there were any differences between estimations in terms of these factors. 

The study found that an increase in the number of measurements using item bank 

with IPD items results in a decrease in measurement precision and the amount of 

information the test provides. Factorial ANOVA for independent samples revealed 

that measurements precision and TIF differences are mostly statistically 

significant. Although all IPD conditions negatively affect measurement precision 

and TIF, it has been shown that sample size and item bank size generally do not 

have an increasing or decreasing effect on these factors. 

1. INTRODUCTION 

Computer adaptive tests (CAT) produce more reliable results in ability estimations of 

individuals compared to paper-and-pencil tests and have many advantages. CAT 

administrations based on Item Response Theory (IRT) place each individual's ability on the 

same scale with item difficulty values by employing a variety of computer algorithms and 

measuring the probability that 50% of individuals will provide a correct response to the relevant 

item (Lord, 1980; Reckase, 2011). This way, tests can be conducted that are more efficient than 

paper-and-pencil tests in terms of cost and time, but are just as valid and reliable as paper-and-

pencil tests by providing individuals with suitable items in line with their ability levels 

(Çıkrıkçı-Demirtaşlı, 1999; Kaptan, 1993; Wainer, 1993; Weiss & Kingsbury, 1984). 

 

*CONTACT: Merve ŞAHİN KÜRŞAD    sahinmerv@gmail.com    Devlet Mahallesi, Kara Harp Okulu 

Caddesi, National Defense University, Department of Measurement and Evaluation, Ankara, Türkiye 

e-ISSN: 2148-7456 /© IJATE 2022 

https://doi.org/10.21449/ijate.1070848
https://ijate.net/
https://dergipark.org.tr/en/pub/ijate
https://orcid.org/0000-0002-6591-0705
https://orcid.org/0000-0002-3879-9204
https://orcid.org/0000-0003-0876-6644


Int. J. Assess. Tools Educ., Vol. 9, No. 3, (2022) pp. 654–681 

 655 

Creating a large item bank consisting of high-quality items in CAT administrations is the 

primary step and an important factor for obtaining valid and reliable results. During the 

administration of tests, it is important for these items to be of high quality and to maintain this 

characteristic in successive administrations to obtain accurate results (Bock et al, 1988). 

Maintaining the item bank's continuity is important for test reliability and observing the changes 

in item parameters (Risk, 2015). The long-term use of items in the item bank may negatively 

affect the quality of items, because the repeated use of certain items in administration results in 

individuals becoming familiar to with these items. Even if the reliability of the item bank is 

ensured, the frequent encounter of individuals with the same items becomes a factor that 

compromises reliability and causes item parameters to change or deviate from their original 

values over time. This change is called item parameter drift (IPD) (Bock et al., 1988). First 

introduced to the literature in the 1980s, IPD is defined as the differentiation of item parameters 

over time in successive administrations of tests (Hatfield & Nhouyvanisvong, 2005; McCoy, 

2009). This differentiation may occur in one or more parameters of an item (Goldstein, 1983).   

Item parameter drift may even occur in situations where the security of the item bank is ensured, 

and high-quality items are prepared. There are several reasons for the occurrence of IPD in 

items. Some of these reasons may be listed as: historical and cultural changes, incorrect item 

calibration, miscalculation of item location on the scale, changes in knowledge, skills, and 

educational activities, overuse of items, changes in policy or curricula, cheating or security (Li, 

2008; Stahl & Muckle, 2007). IPD arising from these reasons may increase or decrease item 

difficulty or simultaneously increase and decrease item difficulty or other item parameters. 

Certain negative results thus may arise. The most significant of these negative results is the 

violation of the invariance assumption, one of the basic assumptions of IRT. If the invariance 

assumption is ensured, the differences between scores accurately reflect ability differences 

between individuals or individuals' development over time. However, the occurrence of IPD 

leads to errors in measurement results, and the test may measure something outside of the 

construct it intends to measure. Validity also decreases when variables that are irrelevant to the 

measured construct get mixed into measurement results (McCoy, 2009). This leads to certain 

problems in the administrations of tests that require the invariance property in item parameters, 

including test equating, test developing/parallel test developing and CAT (Li, 2008). For 

instance, in the event of IPD in pre-test items of CAT administrations, errors may occur in item 

calibration (Meng et al., 2010). 

When the scores of two individuals are close to each other, or an individual's score is close to 

the cut-off score, IPD may lead to incorrect pass-fail decisions and deviations in ability 

estimations (Rupp & Zumbo, 2006). Apart from that, IPD can also occur when there is not 

enough time to answer the questions in a test. Not providing sufficient time results in individuals 

being unable to reach certain items at the end of the test and these items appear more difficult 

than they actually are. If this problem persists in successive tests administrations, errors pile up 

and the measurement using previous test items is negatively affected. This leads to the 

measurement scale to drift (Wise & Kingsbury, 2000).  

Another impact of IPD can be observed in CAT administrations. Similar to paper-and-pencil 

tests, both item and ability parameters are negatively affected in CAT administrations. In terms 

of item parameters, using previous item parameter estimations to scale new test items leads to 

errors in item parameter calibration. This results in the deviation of item parameters. The 

deviation of items from their original parameter values results in the incorrect calibration of 

pre-test items, leading to errors in individuals' ability estimations (Deng & Melican, 2010). As 

CAT administrations become more frequently used, the occurrence of IPD in these 

administrations negatively affects the accuracy of ability estimations and the validity of 

inferences from test scores.  
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IPD is a condition that affects the accuracy of individuals' ability estimations and pass/fail 

decisions. Examining the effect of IPD on measurement precision and TIF is crucial for the safe 

combination of exams as a whole and the validity of inferences to be made from test scores. 

Although the use of CAT is widespread, the presence of IPD in these applications negatively 

affects the accuracy of ability estimations and the validity of inferences made from test scores. 

Therefore, an examination of the impact of IPD on ability estimations for CAT administrations 

is significant for the validity of inferences from test scores. Additionally, items containing IPD 

may have different effects in groups participating in different test administrations. This is a 

significant issue for CAT administrations since it violates the invariance assumption, one of the 

basic assumptions of IRT (Babcock & Albano, 2012). The presence of IPD in test applications, 

where large item banks are used, and especially important decisions are made about the test 

takers, causes variables unrelated to the structure to interfere with the measurement results, thus 

reducing the validity. This issue negatively affects measurement precision of scores and validity 

when interpreting scores in particular (Risk, 2015). For this reason, carrying out IPD studies of 

item banks in CAT administrations serves to counter this issue, posing threats to construct 

validity (Wainer et al., 2010). The results of this study are also important to see how the 

direction, amount and size of the deviations in the item difficulty parameter affect measurement 

precision and TIF for future CAT applications. In this direction, it is expected that the research 

findings will provide psychometric information about the organization of the CAT, the 

sustainability, and updating of the item bank to the institutions and organizations serving in the 

field of measurement and evaluation. 

The overuse of items in successive CAT administrations is a significant cause of IPD 

occurrence (Bock et al., 1988). For this reason, the item bank should regularly be inspected and 

updated. IPD studies should therefore be conducted for CAT administrations. However, few 

studies in the literature examine the impacts of IPD on estimation of ability and item parameters 

in CAT administrations (Aksu Dünya, 2017; Deng & Melican, 2010; Guo & Wang, 2003; Han 

& Guo, 2011; Risk, 2015). When some of these studies were closely examined, Guo and Wang 

(2003) examined the effect of scale drift on the CAT application. The study was conducted with 

real and simulative data, and the bias in ability estimations and the change in test scores were 

calculated. Bias, test characteristic curves, and item characteristic curves were compared. As a 

result of the research, it was stated that a low amount of bias was observed, and this was not 

important in practical terms. In addition, it was determined that scale drift affects test scores, 

but this change between two time points is very low. Deng and Melican (2010) studied IPD at 

multiple time points in CAT applications. The adaptive ACCUPLACER® test was evaluated 

as part of the scope of the study. Four time points were analyzed using a 3-parameter logistic 

model (3PLM), and the IPD at parameters a, b, and c was examined. In the evaluation, the item 

and test characteristic curves were compared. As a result of study, very few items were found 

to have IPD, but none of the items showed IPD due to its frequent occurrence. 

Han and Guo (2011) studied IPD in the context of CAT, resulting from practice and curriculum 

change. In the study, the effect of IPD on item calibration and ability estimation was examined, 

using both real and simulative data. Items were calibrated according to 3PLM. According to 

the results of the study, it was determined that the effect of IPD on item calibration and ability 

estimations was high, but this effect was not statistically significant. A similar result was 

obtained by Risk (2015) who examined the effect of IPD on ability estimations in CAT 

application under various simulative conditions. The Rasch model was used in the study, and 

the effect of IPD on measurement precision and test effectiveness was examined. When the 

findings obtained from all conditions are evaluated in general, it is concluded that there are 

negligible differences between the baseline data set and the conditions that create IPD. 

However, the most important finding that emerged as a result of the study was; that IPD size 

has a greater effect on measurement precision than the number of items showing IPD. 
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Aksu Dünya (2017) investigated the effect of IPD on ability estimations and classification 

accuracy in the CAT under the condition that IPD affects subgroups with Rasch dichotomous 

model. According to the study's findings, classification accuracy was significantly affected 

when a certain group of individuals were exposed to items with IPD. At the same time, average 

ability estimates were less affected by IPD. In summary, these studies generally focus on the 

impacts of IPD on item and ability parameters. While some studies find that IPD has a 

significant effect on CAT-obtained ability estimates (Abad et al., 2010; Hagge et al., 2011; 

Risk, 2015), others argue that its effect on CAT-obtained ability estimates is small and 

insignificant (Aksu Dünya, 2017; Deng & Melican, 2010; Guo & Wang, 2003; Han & Guo, 

2011; Jiang et al., 2009; McCoy, 2009). These studies mostly examine the impacts of IPD for 

two time points. However, to be able to observe the impacts of IPD, measurements should be 

taken for more than two time points. Because it is stated in the literature that if there is an IPD, 

its effect can be observed clearly after two time points, the IPD's effect can be observed after 

two time points. Therefore, more than two time points are needed (Babcock & Albano, 2012; 

Chan et al, 1999; Deng & Melican, 2010; Kim & Cohen, 1992). During the literature review, 

we could not find any study examining the impact of this issue on ability estimations and test 

information function while accounting for sample size, item bank size, and various conditions 

of IPD. Therefore, the impacts of IPD on factors as mentioned above in CAT administrations 

are not fully known. The aim of this study is to investigate the impact of IPD on measurement 

precision and TIF in CAT administrations. To this end, answers to the following research 

questions are sought: 

1. When the sample size is 1000, IPD size is 0.00, 0.50, 0.75, 1.00 logit, percentage of items 

containing IPD is 0%, 5%, 10%, 20%, item bank size is 200, 500, 1000, and measurements are 

taken for three time points, how do the values of measurement precision and TIF vary in CAT 

administrations? 

2. When the sample size is 5000, IPD size is 0.00, 0.50, 0.75, 1.00 logit, percentage of items 

containing IPD is 0%, 5%, 10%, 20%, item bank size is 200, 500, 1000, and measurements are 

taken for three time points, how do the values of measurement precision and TIF vary in CAT 

administrations? 

2. METHOD 

2.1. Research Model 

This is a simulation-based study that utilized simulated data. Simulation studies are frequently 

favored in real-world situations involving relatively complex processes, implementation issues, 

or when real data suited to the type of problem are unavailable. Simulation studies consist of 

data generating and analysis processes appropriate to situations encountered in real life (Burton 

et al., 2006; Ranganathan & Foster, 2003). Simulated data are frequently preferred, given the 

fact that most CAT administrations have implementation problems and require a large sample 

size and a large item bank (Barrada et al., 2010; Kalender, 2011; McDonald, 2002; Patton et 

al., 2013; Scullard, 2007; Wang et al., 2012). In this study, because small, medium, and 

especially large item pools and small and especially large sample sizes are used and drawing 

on IRT, examines certain IPD situations under controlled conditions in CAT administrations, it 

is a simulative research. 

2.2. Data Generation and Analysis 

This study used the R programming language and carried out analyses by generating data using 

the R Studio 3.3.2 CRAN package (Nydick, 2015). The characteristics of CAT administrations 

and large-scale assessments were considered when generating data. IPD size and the percentage 

of items containing IPD were considered when creating conditions for IPD. Also, data was 

created for taking measurements at three time points. The initial data set that does not contain 
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IPD was used as the baseline data set during data generation, and data sets containing IPD were 

compared to this baseline data set. Table 1 displays the controlled and manipulated conditions 

used in data generation. 

Table 1. Controlled and manipulated conditions in simulated data generation. 

Controlled Conditions Manipulated Conditions 

1. Distribution of ability parameters 

2. IRT model and distribution of item parameters 

3. Direction and type of IPD 

4. CAT Conditions 

• Method of ability estimation  

• Starting Rule 

• Method of item selection 

• Termination Rule 

1. Sample size (1000, 5000) 

2. IPD size (0.00, 0.50, 0.75, 1.00) 

3. Percentage of items containing IPD (0%, 5%, 

10%, 20%) 

4. Three time points 

5. Item bank size (200, 500, 1000) 

 

 

2.3. Controlled Conditions in Simulated Data Generation 

Since the CAT administration in this study used the Bayesian Expected A Posteriori (EAP) 

estimate for ability estimation, the distribution of ability parameters was generated with normal 

distribution with a mean of zero and standard deviation of one. Rasch was chosen as the IRT 

model because it is favored in large-scale assessments such as Trends in International 

Mathematics and Science Study (TIMMS) and Programme for International Student 

Assessment (PISA) (Schulz & Frallion, 2009) and IPD studies for large-scale assessments 

(Babcock & Albano, 2012; Bergstrom et al., 2001; Hagge et al., 2011; Jones & Smith, 2006; 

Kingsbury & Wise, 2011; McCoy, 2009; Meyers et al., 2009; Witt et al., 2003).Taking into 

account the characteristics of CAT administrations and studies in the relevant literature (Filho 

et al., 2014; Svetina et al., 2013), the distribution of item difficulty parameters was generated 

with normal distribution with a mean of zero and a standard deviation of one.  

The study examines the impact of the item difficulty parameter drift towards the easier 

condition on ability estimations. There are several reasons for examining this condition. These 

reasons may be listed as: this situation being encountered more frequently (Babcock & Albano, 

2012; Hagge et al., 2011; Risk, 2015; Stahl & Muckle, 2007) and situations with drift in item 

difficulty parameter being more significant than other parameters (Bock et al., 1988; Donoghue 

& Isham, 1998; Song & Arce-Ferrer, 2009). Another reason is that although frequent exposure 

to items or factors such as cheating are observed more frequently, these situations negatively 

affect ability estimations by causing deviation towards the easier (Risk, 2015; Wells et al., 

2012). 

After IPD conditions were prepared, conditions for CAT administration were formed. Expected 

A Posteriori (EAP) was used as the ability estimation method. The ability estimation methods 

frequently used in CAT applications are the Maximum Likelihood Estimation (MLE), EAP and 

Maximum A Posteriori (MAP) methods. In most of the studies, the EAP ability estimation 

method yielded better results than the other two methods (Eroğlu, 2013; Kezer, 2013; Keller, 

2000; Kingsbury & Zara, 2009; Wang et al., 2012), with a lower standard error (Wang, 1997) 

and lower bias value than the MLE method (Eroğlu, 2013). The MLE method was not specified 

as effective because it estimates ability with more items than EAP and MAP methods (Kezer, 

2013). For these reasons, the EAP method was used as an ability estimation method in the CAT 

application. 

Prior θ distributions according to scores individuals acquired in pre-tests were used as starting 

rule. When the Bayesian approach is used as an ability estimation method, the initial θ level is 
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estimated from the pre-test before estimating the individuals' real abilities. Thus, the first item 

to be applied will be the item that gives the most information at the initial θ level (Eroğlu, 2013; 

Kezer, 2013; Segall, 2004). Accordingly, in this study, as the ability estimation method, one of 

the Bayes methods, EAP, was used, and the prior θ distributions were used as the starting rule 

according to the scores of the individuals from the pre-test. The Kullback–Leibler divergence 

was used for the item selection method. Basic item selection methods used in CAT applications; 

Maximum Fisher Information, Kullbak-Leibler Information, Interval Information Criterion, 

Likelihood Weighted Information Criterion, a-stratification, Gradual Maximum Information 

Ratio, Optimal -b Value (Sulak, 2013). In studies comparing the performance of these methods, 

-a stratification and Kullbak-Leibler item selection methods have better performances in ability 

estimations than other methods (Barrada et al., 2010; Chang & Ying; 1999; Chen et al., 2000; 

Deng et al., 2010; Eggen, 1999; Linda 1996; Sulak, 2013; Veldkamp & van der Linden, 2006; 

Yao, 2013). However, since the analyzes were made based on the Rasch model within the scope 

of this study, the -a stratification method is not suitable because the discrimination values of all 

items are constant. For this reason, the Kullbak-Leibler item selection method was preferred. 

Lastly, the minimum number of items rule, one of the variable-length termination rules, and 

standard error were used as the termination rule. For the minimum number of items rule, the 

termination rule was set as minimum 10 items and standard error at less than 0.40. Higher error 

and bias values are obtained when the minimum number of items applied is less than 10 

(Babcock & Weiss 2012; Erolu, 2013), and the normal distribution is compromised when the 

minimum number of items applied is low (Blais & Raiche, 2002). Therefore, in this study, a 

minimum of 10 items was preferred for the minimum number of items rule. In the standard 

error termination rule between the [-3.00; +3.00] ability interval, a standard error equal to or 

less than 0.40 is suitable for measurement precision (Babcock & Weiss, 2012; Blaise & Raiche, 

2002). Therefore, these termination rules were preferred. 

2.4. Manipulated Conditions in Simulated Data Generation 

While a sample size of 1000-2000 is required to make accurate estimations of item parameters 

based on IRT (Rudner & Guo, 2011; Stahl & Muckle, 2007), lower standard error values are 

obtained when the sample size is 5000 (Şahin, 2012). The sample size of 1000 was thus treated 

as the small sample size and 5000 as the large sample size. One of the most important factors 

affecting the estimation of ability is the size of the IPD (Risk, 2015). IPD size of 0.50 logit or 

more significantly affects parameter estimations (Donoghue & Isham, 1998; Han & Wells, 

2007; Wollack et al., 2005). Therefore 0.00, 0.50, 0.75, and 1.00 logit were generated as IPD 

magnitude to examine the impact of IPD magnitude. 

As one of the factors negatively affecting ability estimations, the IPD percentage (Hagge et al., 

2011; Huang & Shyu, 2003; Wells et al., 2002) was found to range between 5 and 20–25% in 

the relevant literature (Hagge et al., 2011; Stahl et al., 2002; Song & ArceFerrer, 2009; Wells 

et al., 2002). This study examines IPD-containing items with 0%, 5%, 10%, and 20%. To fully 

reveal the impact of IPD, more than two time points or measurements are needed (Babcock & 

Albano, 2012; Chan et al., 1999; Deng & Melican, 2010; Kim & Cohen, 1992). For this reason, 

this study uses parameter estimations at three time points. In line with some studies in the 

literature regarding item bank size in the CAT application (Han & Guo, 2011; Risk, 2015; 

Veldkamp & Linden, 2006; Wise & Kingsbury, 2000), this study set item bank sizes of 200, 

500 and 1000 for small, medium and large item banks respectively.  

Given the controlled and manipulated conditions, simulated data were generated for 288 

situations, calculated as 2 (sample sizes) × 3 (item bank sizes) × 4 (IPD sizes) × 4 (IPD 

percentages) × 3 (time points). For every situation, a total of 100 replications were carried out 

and 28,800 analyses were performed. In simulation studies, replication numbers must be kept 

higher to see the effect of the variables on the situations to be observed more clearly (Köse & 
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Başaran, 2021). As Evans (2010) quoted, to eliminate bias caused by sample size, at least 25 

replications were recommended (Harwell, 1996). Consequently, 100 replications were favored. 

To examine the effect of condition on estimations of ability, values for measurement precision 

(bias and root-mean-square error -RMSE-) and TIF were calculated. The calculation formulas 

are displayed in Table 2 below. 

Table 2. Assessment criteria for item parameter drift. 

Criteria Description Formula 

M
ea

su
re

m
en

t 

P
re

ci
si

o
n

 

Bias 
Systematic deviation of real ability from 

estimated ability. 

∑ (Ɵ𝚤̂ − Ɵ𝑖)𝑛
𝑗=1

𝑛
 

RMSE Root mean square error √
∑ (Ɵ𝚤̂ − Ɵ𝑖)2𝑛

𝑗=1

𝑛
 

T
es

t 
In

fo
rm

at
io

n
 

F
u

n
ct

io
n

 

TIF 

The test information function is equal to the 

total information function of items 

individuals obtain from the relevant test. This 

value is calculated using standard error 

values. 

𝑆𝑒𝑚(𝜃̂) =  
1

√𝐼(𝜃)
 

𝜃𝑖: Ability of individuals, 𝜃𝚤̂: Estimated ability of individuals, n: Total number of individuals, I(Ɵ): Item information 

function. Also, measurement precision and TIF are correlated with each other by SEM with RMSE2= BIAS2+ Sem
2 formula 

After calculating values for measurement precision and TIF for 100 replications using the 

formula in Table 2, a three-factor analysis of variance (ANOVA) was performed for 

independent samples to examine whether the obtained values displayed statistically significant 

differences. In the analysis, the independent variables consisted of IPD size (0.00 logit, 0.50 

logit, 0.75 logit, 1.00 logit), IPD percentage (0%, 5%, 10%, 20%), and measurements using 

item banks with IPD (3 measurements), while the dependent variables consisted of bias, RMSE, 

and TIF values. Along with ANOVA, the Eta squared (ɳ2) effect size was also reported. When 

interpreting the effect size, .01 was taken as small, .09 as a medium, and .25 as large effect sizes 

(Cohen, 1988). When calculating the impact of IPD for every condition, the initial data set that 

did not contain IPD was taken as the baseline data set. After forming IPD conditions using this 

data set, data sets containing IPD and the baseline data set were compared, and the results were 

interpreted.   

3. FINDINGS 

This section first discusses the findings and interpretations obtained from data for the sample 

size of 1000, then goes on to findings and interpretations of data with a sample size of 5000.  

3.1. Findings on Comparison of Conditions with Sample Size 1000 

The first criterion for measurement precision, i.e., the dependent variable, is the bias values 

regarding ability estimations. Findings of bias values are shown in Figure 1. a, b and c. When 

bias values were examined for a sample size of 1000, the increase in IPD size (0.00, 0.50, 0.75, 

1.00) and IPD percentage (0%, 5%, 10%, 20%) for item bank sizes of 200, 500 and 1000, 

resulted in a tendency of ability estimation bias values obtained at three time points to increase 

in the negative direction. Besides this, as item bank size increased, no increasing or decreasing 

bias tendency were observed. Negative bias values mean that individuals' estimated ability 

values are lower than their real ability values. Since certain items in the item bank displayed 

IPD in the easier direction, we would have expected individuals' estimated ability values to be 

higher than their real ability values; in other words, bias values should have increased in the 

positive direction. There may be two reasons for obtaining results in the opposite direction. 
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Figure 1. a, b and c. Figures denoting comparison of bias values at three time points for different item 

bank sizes with different IPD sizes and different IPD percentages with sample size n=1000. 

a. Bias values for item bank of 200 with sample size n=1000. 

 

b. Bias values for item bank of 500 with sample size n=1000. 

 

c. Bias values for item bank of 1000 with sample size n=1000. 
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Firstly, IPD in the easier direction occurred only for the item difficulty parameter. If IPD had 

occurred at both directions, bias estimations would have been calculated as near-zero (Aksu 

Dünya, 2017; Wei, 2013). Secondly, although individuals were provided with items according 

to their ability level, they may have answered incorrectly. Some studies in relevant literature 

have also come up with similar findings (Chen, 2013; Risk, 2015; Rupp & Zumbo, 2003). 

On the other hand, a study by Guo and Wang (2003) that examined the impact of the parameter 

drift in CAT administrations on test scores showed that ability estimation bias values for item 

banks with IPD were not affected. This is because the study carried out measurements at two 

time points. Babcock and Albano (2012) also stated that taking ability measurements at two 

time points is insufficient to make clear inferences about how IPD affects ability estimations. 

In other words, in order to reveal the effects of IPD, it is necessary to take measurements at 

least three time points. 

Three-factor ANOVA results for independent samples, as shown in Table 3, examine whether 

obtained differences were statistically significant according to above-mentioned bias values. In 

Table 3, IPD size represents the drift size of items containing IPD in the item bank (0.00 logit, 

0.50 logit, 0.75 logit, 1.00 logit), IPD percentage represents the percentage of items containing 

IPD in the item bank (0%, 5%, 10%, 20%), and measurement factor represents the number of 

measurements performed with the item bank containing items with IPD (3 measurements). 

Table 3. Comparison of bias values according to three time points for different item bank sizes with 

different IPD sizes and different IPD percentages with sample size n=1000. 

Item Bank 

Size 
Source of Variation 

Sum of 

Squares 
df 

Mean of 

Squares 
F 

Effect 

Size (ɳ2) 

200 

IPD Size 0.515 3 0.172 5366.84* 0.15 

IPD Percentage 2.031 3 0.677 21165.16* 0.58 

Measurement 0.235 2 0.118 2448.95* 0.06 

IPD Size*IPD Percentage 0.113 9 0.013 1177.58* 0.03 

IPD Size*Measurement 0.016 6 0.003 166.74* 0.01 

IPD Percentage*Measurement 0.071 6 0.012 739.89* 0.02 

IPD Size*IPD Percentage*Measurement 0.011 18 0.001 114.63* 0.01 

Error 0.456 4752 0.000   

Total 3.448 4799    

500 

IPD Size 0.196 3 0.065 2352.00* 0.03 

IPD Percentage 4.414 3 1.471 52968.00* 0.73 

Measurement 0.493 2 0.247 5916.00* 0.08 

IPD Size*IPD Percentage 0.070 9 0.008 840.00* 0.01 

IPD Size*Measurement 0.022 6 0.004 264.00* 0.01 

IPD Percentage*Measurement 0.333 6 0.056 3996.00* 0.05 

IPD Size*IPD Percentage*Measurement 0.060 18 0.003 720.00* 0.01 

Error 0.396 4752 0.000   

Total 5.984 4799    

1000 

IPD Size 0.271 3 0.090 2893.91* 0.05 

IPD Percentage 4.232 3 1.411 45192.05* 0.78 

Measurement 0.248 2 0.124 2648.31* 0.04 

IPD Size*IPD Percentage 0.047 9 0.005 501.90* 0.01 

IPD Size*Measurement 0.024 6 0.004 256.29* 0.01 

IPD Percentage*Measurement 0.058 6 0.010 619.36* 0.01 

IPD Size*IPD Percentage*Measurement 0.075 18 0.004 800.90* 0.01 

Error 0.445 4752 0.000   

Total 5.400 4799    

*p<.05 

ANOVA results for independent samples regarding bias show that the main effect and effects 

of two-way and three-way interactions of the number of measurements, IPD size, and IPD 

percentage for item bank sizes of 200, 500 and 1000 items have statistically significant effects 
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on bias. These generally have low effect sizes (Cohen, 1988). The post-hoc analysis results also 

revealed differences for every level of every factor. IPD percentage is the factor with the most 

impact on ability estimation bias among the variables within the scope of this study. Aksu 

Dünya (2017) and Babcock and Albano (2012), who used the Rasch model and Abad et al. 

(2010), who used the 3PLM IRT model, obtained similar findings.  

The second criterion for measurement precision, i.e., the dependent variable, is the RMSE 

values for ability estimations. Obtained RMSE values are shown in Figure 2. a, b and c. 

Figure 2. a, b. and c. Figures denoting comparison of RMSE values at three time points for different 

item bank sizes with different IPD sizes and different IPD percentages with the sample size is n=1000. 

a. RMSE values for item bank of 200 with sample size n=1000. 

 

b. RMSE values for Item Bank of 500 with Sample Size n=1000. 
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c. RMSE Values for Item Bank of 1000 with Sample Size n=1000. 

 

When the RMSE values were examined for the sample size of 1000, the increase in IPD size 

and IPD percentage for item bank sizes of 200, 500, and 1000, resulted in a tendency of ability 

estimation RMSE values obtained at three time points to increase. The increase in the number 

of measurements in item banks containing IPD, IPD size, and IPD percentage results in more 

erroneous ability estimations leading to a decrease in measurement precision. The lowest values 

of RMSE were obtained in the baseline data set, since there was no IPD. However, RMSE 

values decreased as the item bank size increased for the baseline datasets. In other words, as 

the item bank size increases, less erroneous results regarding ability estimations were obtained 

in the baseline data set. Besides this, as item bank size increased for data sets with IPD, no 

increasing or decreasing RMSE tendency were observed. Some studies in relevant literature 

have also obtained similar findings (Aksu Dünya, 2017; Babcock & Albano, 2012; Chen, 2013; 

Risk, 2015; Wells et al., 2002). While Aksu Dünya (2017) argues that the lowest RMSE value 

was obtained for the baseline data set, it is stated that the increase in the percentage of items 

containing IPD resulted in more erroneous ability estimations. Wells et al. (2012) found that as 

sample size increased, RMSE values decreased, leading to more accurate estimates. However, 

as IPD size increased within the same sample size, RMSE values increased, leading to less 

precise measurements. Three-factor ANOVA results for independent samples are shown in 

Table 4 which examine whether obtained differences were statistically significant according to 

the RMSE values discussed above.  

Results of a three-factor ANOVA on RMSE values for independent samples indicate that the 

main effect and effects of two-way and three-way interactions of the number of measurements, 

IPD size, and IPD percentage for item bank sizes of 200, 500 and 1000 items have statistically 

significant effects on RMSE. These generally possess low and high effect sizes (Cohen, 1988). 

The results of post-hoc analysis revealed differences for every level of every factor. IPD 

percentage is the factor with the most impact on ability estimation RMSE among the variables 

within the scope of this study. Risk (2015) also reached similar findings. A study by Babcock 

and Albano (2012) obtained similar findings, but argued that the factor with the most impact 

on RMSE values was IPD size. 
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Table 4. Comparison of RMSE values according to three time points for different item bank sizes with 

different IPD sizes and different IPD percentages with sample size is n=1000. 

Item Bank 

Size 
Source of Variation 

Sum of 

Squares 
df 

Mean of 

Squares 
F 

Effect 

Size (ɳ2) 

200 

IPD Size 0.039 3 0.013 652.56* 0.02 

IPD Percentage 0.884 3 0.295 14791.44* 0.57 

Measurement 0.180 2 0.090 3011.83* 0.11 

IPD Size*IPD Percentage 0.023 9 0.003 384.85* 0.01 

IPD Size*Measurement 0.005 6 0.001 83.66* 0.01 

IPD Percentage*Measurement 0.115 6 0.019 1924.23* 0.07 

IPD Size*IPD Percentage*Measurement 0.005 18 0.000 83.66* 0.00 

Error 0.284 4752 0.000   

Total 1.535 4799    

500 

IPD Size 0.104 3 0.035 1752.51* 0.03 

IPD Percentage 1.431 3 0.477 24113.87* 0.54 

Measurement 0.449 2 0.225 7566.13* 0.16 

IPD Size*IPD Percentage 0.068 9 0.008 1145.87* 0.02 

IPD Size*Measurement 0.016 6 0.003 269.62* 0.00 

IPD Percentage*Measurement 0.274 6 0.046 4617.19* 0.10 

IPD Size*IPD Percentage*Measurement 0.020 18 0.001 337.02* 0.00 

Error 0.282 4752 0.000   

Total 2.644 4799    

1000 

IPD Size 0.718 3 0.239 9425.24* 0.12 

IPD Percentage 1.880 3 0.627 24678.90* 0.32 

Measurement 1.777 2 0.889 23326.81* 0.30 

IPD Size*IPD Percentage 0.253 9 0.028 3321.15* 0.04 

IPD Size*Measurement 0.205 6 0.034 2691.05* 0.03 

IPD Percentage*Measurement 0.552 6 0.092 7246.14* 0.09 

IPD Size*IPD Percentage*Measurement 0.089 18 0.005 1168.31* 0.01 

Error 0.362 4752 0.000   

Total 5.836 4799    

*p<.05 

The third criterion for comparing independent variables discussed in the study is the TIF values. 

Findings for TIF values are shown in Figure 3. a, b and c. When TIF values were examined for 

a sample size of 1000, the increase in IPD size and IPD percentage for item bank sizes of 200, 

500, and 1000 resulted in a tendency of ability estimation TIF values obtained at three time 

points to decrease. Therefore, the increase in the number of measurements, IPD size and IPD 

percentage result in a decrease in the amount of information the test provides. This tendency 

does not change with an increase in item bank size. Studies in the literature indicate that TIF 

tend to change even at low levels when IPD is present (Chan et al., 1999; Deng & Melican, 

2010; Guo & Wang, 2003). 
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Figure 3. a, b and c. Figures denoting comparison of TIF values at three time points for different item 

bank sizes with different IPD sizes and different IPD percentages with the sample size is n=1000. 

a. TIF values for item bank of 200 with sample size n=1000. 

 

b. TIF values for item bank of 500 with sample size n=1000. 
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c. TIF values for item bank of 1000 with sample size n=1000. 

 

The three-factor ANOVA results for independent samples, shown in Table 5, examine whether 

the differences obtained were statistically significant according to the TIF values discussed 

above. 

Table 5. Comparison of TIF values according to three time points for different item bank sizes with 

different IPD sizes and different IPD percentages with sample size n=1000. 

Item Bank 

Size 
Source of Variation 

Sum of 

Squares 
df 

Mean of 

Squares 
F 

Effect 

Size (ɳ2) 

200 

IPD Size 19.342 3 6.447 79578.51* 0.35 

IPD Percentage 8.060 3 2.687 33161.14* 0.14 

Measurement 1.075 2 0.538 4422.86* 0.02 

IPD Size*IPD Percentage 16.112 9 1.790 66289.37* 0.30 

IPD Size*Measurement 2.148 6 0.358 8837.49* 0.03 

IPD Percentage*Measurement 2.148 6 0.358 8837.49* 0.04 

IPD Size*IPD Percentage*Measurement 4.294 18 0.239 17666.74* 0.08 

Error 1.155 4752 0.000   

Total 54.334 4799    

500 

IPD Size 0.000 3 0.000 0.00* 0.00 

IPD Percentage 0.001 3 0.000 316.80* 0.02 

Measurement 0.012 2 0.006 3801.60 - 

IPD Size*IPD Percentage 0.000 9 0.000 0.00* 0.00 

IPD Size*Measurement 0.003 6 0.000 950.40 - 

IPD Percentage*Measurement 0.005 6 0.000 1584.00 - 

IPD Size*IPD Percentage*Measurement 0.008 18 0.000 2534.40 - 

Error 0.015 4752 0.000   

Total 0.045 4799    

1000 

IPD Size 0.000 3 0.000 0.00* 0.00 

IPD Percentage 0.001 3 0.001 279.53* 0.00 

Measurement 0.018 2 0.009 5031.53 - 

IPD Size*IPD Percentage 0.068 9 0.007 19008.00* 0.00 

IPD Size*Measurement 0.003 6 0.000 838.59 - 

IPD Percentage*Measurement 0.014 6 0.002 3913.41 - 

IPD Size*IPD Percentage*Measurement 0.008 18 0.000 2236.24 - 

Error 0.017 4752 0.000   

Total 0.130 4799    

*p<.05 
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The three-factor ANOVA results for independent samples in terms of TIF values show that the 

main effect and the effects of the two- and three-factor interactions of the number of 

measurements, IPD size and IPD percentage have statistically significant effects on TIF for an 

item bank of 200 items in a sample of 1000. Especially for an item bank of 200 items, IPD size 

factors significantly affect TIF values. This is high-level effect (Cohen, 1988). Although IPD 

size, IPD percentage and IPD size*IPD percentage have interaction effects on item banks of 

500 and 1000 items, these effects are low-level (Cohen, 1988). While some studies on the 

impacts of IPD on TIF (Chan et al., 1999) support this finding, some studies argue that there 

are no statistically significant differences (Deng & Melican, 2010; Guo and Wang, 2003). 

3.2. Findings of Comparison of Conditions for Sample Size 5000 

The findings for bias values, which constitute the first criterion for comparing independent 

variable conditions for a sample size of 5000, are shown in Figure 4. a, b and c. 

Figures 4. a, b and c. Figures denoting comparison of bias values at three time points for different item 

bank sizes with different IPD sizes and different IPD percentages with the sample size is n=5000. 

a. Bias values for item bank of 200 with sample size n=5000. 

 

b. Bias values for item bank of 500 with sample size n=5000. 
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c. Bias values for item bank of 1000 with sample size n=5000. 

 

When bias values were examined for a sample size of 5000, the increase in IPD size and IPD 

percentage for item bank sizes of 200, 500 and 1000 resulted in a tendency of ability estimation 

bias values obtained at three time points to grow in the negative direction as in 1000 sample 

size. Negative bias values mean that individuals' estimated ability values are lower than their 

real ability values. Since certain items in the item bank displayed IPD in the easier direction, 

we would have expected that individuals' estimated ability values to be higher than their real 

ability values. The reason could be either that IPD occurred only in the easier direction and only 

in the item difficulty parameter (Aksu Dünya, 2017; Wei, 2013), or individuals were provided 

items according to their ability level and may have answered them incorrectly (Chen, 2013; 

Risk, 2015; Rupp & Zumbo, 2003). The increase in the number of measurements, IPD size, and 

IPD percentage results in more biased ability estimations leading to a decrease in measurement 

precision. Studies in the literature indicate that IPD negatively affects bias values (Aksu Dünya, 

2017; Chen, 2013; Risk, 2015; Rupp & Zumbo, 2003). IPD occurrences at and over 0.50 logit 

in particular significantly affect parameter estimations (Han & Wells, 2007; Wollack et al., 

2005). Since this study also examined conditions with IPD at and over 0.50 logit, differences 

were obtained in bias values, albeit low.   

Three-factor ANOVA results for independent samples, shown in Table 6, examine whether 

obtained differences were statistically significant according to the bias values discussed above. 

Three-factor ANOVA results for independent samples regarding bias show that both the main 

effect and effects of two-way and three-way interactions of the number of measurements, IPD 

size and IPD percentage for item bank sizes of 200, 500 and 1000 items have statistically 

significant effects on bias. These generally have low effect sizes (Cohen, 1988). The results of 

post-hoc analysis also revealed differences for every level of every factor. IPD percentage is 

the factor with the most impact on ability estimation bias among the variables within the scope 

of this study. Some studies in the literature have also reached similar findings (Abad et al., 

2010; Babcock & Albano, 2012).  
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Table 6. Comparison of bias values according to three time points for different item bank sizes with 

different IPD sizes and different IPD percentages with sample size n=5000. 

Item Bank 

Size 
Source of Variation 

Sum of 

Squares 
df 

Mean of 

Squares 
F 

Effect Size 

(ɳ2) 

200 

IPD Size 0.383 3 0.128 18571.59* 0.10 

IPD Percentage 2.971 3 0.990 144063.18* 0.76 

Measurement 0.166 2 0.083 8049.31* 0.04 

IPD Size*IPD Percentage 0.117 9 0.013 5673.31* 0.03 

IPD Size*Measurement 0.011 6 0.002 533.39* 0.00 

IPD Percentage*Measurement 0.104 6 0.017 5042.94* 0.02 

IPD Size*IPD Percentage*Measurement 0.018 18 0.001 872.82* 0.00 

Error 0.098 4752 0.000   

Total 3.868 4799    

500 

IPD Size 2.081 3 0.694 99888.00* 0.18 

IPD Percentage 6.748 3 2.249 323904.00* 0.60 

Measurement 1.069 2 0.535 51312.00* 0.09 

IPD Size*IPD Percentage 0.806 9 0.090 38688.00* 0.07 

IPD Size*Measurement 0.224 6 0.037 10752.00* 0.02 

IPD Percentage*Measurement 0.183 6 0.031 8784.00* 0.01 

IPD Size*IPD Percentage*Measurement 0.212 18 0.012 10176.00* 0.02 

Error 0.099 4752 0.000   

Total 11.422 4799    

1000 

IPD Size 0.228 3 0.076 11169.65* 0.04 

IPD Percentage 4.403 3 1.468 215701.61* 0.88 

Measurement 0.160 2 0.080 7838.35* 0.03 

IPD Size*IPD Percentage 0.033 9 0.004 1616.66* 0.00 

IPD Size*Measurement 0.017 6 0.003 832.82* 0.00 

IPD Percentage*Measurement 0.049 6 0.008 2400.49* 0.01 

IPD Size*IPD Percentage*Measurement 0.007 18 0.000 342.93* 0.00 

Error 0.097 4752 0.000   

Total 4.994 4799    

*p<.05 

The findings for RMSE values, which constitute the second criterion for measurement precision 

where independent variable conditions are compared are shown in Figure 5. a, b and c. 

Figure 5. a, b and c. Figures denoting comparison of RMSE values at three time points for different 

item bank sizes with different IPD sizes and different IPD percentages with the sample size is n=5000. 

a. RMSE values for item bank of 200 with sample size n=5000. 
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b. RMSE values for item bank of 500 with sample size n=5000. 

 

c. RMSE values for item bank of 1000 with sample size n=5000. 

 

When RMSE values were examined, the increase in IPD size and IPD percentage for item bank 

sizes of 200, 500, and 1000 resulted in a tendency of ability estimation RMSE values obtained 

at three time points to increase. The increase in the number of measurements in IPD size, IPD 

percentage, and item banks containing IPD results in more erroneous ability estimations leading 

to a decrease in measurement precision. Some studies in the literature also show that IPD 

conditions increase error values (Aksu Dünya, 2017; Babcock & Albano, 2012; Chen, 2013; 

Risk, 2015; Wells et al., 2002). 

When Figure 5. a and c were examined, it is found that the increase in item bank size of 200, 

500, and 1000 items resulted in a tendency of RMSE values to decrease. A study by Risk (2015) 

used item bank sizes of 300, 500, and 1000 and observed that an increase in item bank size 
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resulted in a decrease in RMSE values. This signifies that an increase in item bank size results 

in a slight decrease in error values between real and estimated ability values.  

Three-factor ANOVA results for independent samples, shown in Table 7, examine whether 

obtained differences were statistically significant according to above-mentioned RMSE values.  

Table 7. Comparison of RMSE values according to three time points for different item bank sizes with 

different IPD sizes and different IPD percentages with sample size n=5000. 

Item Bank 

Size 
Source of Variation 

Sum of 

Squares 
df 

Mean of 

Squares 
F 

Effect Size 

(ɳ2) 

200 

IPD Size 0.408 3 0.136 7400.06* 0.07 

IPD Percentage 2.760 3 0.920 50059.24* 0.47 

Measurement 1.226 2 0.613 22236.46* 0.21 

IPD Size*IPD Percentage 0.267 9 0.030 4842.69* 0.04 

IPD Size*Measurement 0.044 6 0.007 798.05* 0.00 

IPD Percentage*Measurement 0.706 6 0.118 12805.01* 0.12 

IPD Size*IPD Percentage*Measurement 0.085 18 0.005 1541.68* 0.01 

Error 0.262 4752 0.000   

Total 5.758 4799    

500 

IPD Size 0.160 3 0.053 11880.00* 0.03 

IPD Percentage 2.723 3 0.908 202182.75* 0.53 

Measurement 1.089 2 0.545 80858.25* 0.21 

IPD Size*IPD Percentage 0.087 9 0.010 6459.75* 0.01 

IPD Size*Measurement 0.151 6 0.025 11211.75* 0.03 

IPD Percentage*Measurement 0.602 6 0.100 44698.50* 0.11 

IPD Size*IPD Percentage*Measurement 0.206 18 0.011 15295.50* 0.04 

Error 0.064 4752 0.000   

Total 5.082 4799    

1000 

IPD Size 0.299 3 0.100 22916.90* 0.08 

IPD Percentage 1.702 3 0.567 130450.06* 0.48 

Measurement 0.673 2 0.337 51582.19* 0.19 

IPD Size*IPD Percentage 0.240 9 0.027 18394.84* 0.06 

IPD Size*Measurement 0.063 6 0.011 4828.65* 0.02 

IPD Percentage*Measurement 0.372 6 0.062 28512.00* 0.10 

IPD Size*IPD Percentage*Measurement 0.064 18 0.004 4905.29* 0.02 

Error 0.062 4752 0.000   

Total 3.475 4799    

*p<.05 

The three-factor ANOVA results for independent samples regarding RMSE values show that 

the main effect and the effects of the two- and three-way interactions of the number of 

measurements, IPD size, and IPD percentage for item bank sizes of 200, 500 and 1000 items 

have statistically significant effects on RMSE. These generally possess low and high effect 

sizes (Cohen, 1988). The results of post-hoc analysis also revealed differences for every level 

of every factor. IPD percentage is the factor with the most impact on ability estimation RMSE 

among the variables within the scope of this study. Some studies in the literature also support 

this finding (Aksu Dünya; 2017; Babcock & Albano, 2012; Risk, 2015). On the other hand, 

some studies argue that the impact of IPD on RMSE values was not statistically significant 

(Chen, 2013; Wells et al., 2002). For instance, Chen (2013) argued that although an increase in 

the percentage of items containing IPD in the item bank increased RMSE values, this increase 

was low-level and statistically insignificant.  

The findings for TIF values, which constitute the third criterion for comparing independent 

variable conditions, are shown in Figure 6. a, b and c. When TIF values were examined for a 

sample size of 5000, the increase in IPD size and IPD percentage for item bank sizes of 200, 

500, and 1000 resulted in a tendency of ability estimation TIF values obtained at three time 

points to decrease. The lowest TIF values were obtained for IPD size of 1.00, IPD percentage 
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of 20, and at the third time point. Therefore, the increase in the number of measurements, IPD 

size, and IPD percentage results in a decrease in TIF, i.e., the amount of information the test 

provides for item banks of 200, 500, and 1000. This decreasing tendency does not change with 

an increase in item bank size. Similarly, TIF values are generally slightly higher in the 5000 

sample than 1000 sample, but no increasing or decreasing trend was observed within each 

sample.  

Figure 6. a, b and c. Figures denoting comparison of TIF values at three time points for different item 

bank sizes with different IPD sizes and different IPD percentages with the sample size is n=5000. 

a. TIF values for item bank of 200 with sample size n=5000. 

 

b. TIF values for item bank of 500 with sample size n=5000. 
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c. TIF values for item bank of 1000 with sample size n=5000. 

 

Three-factor ANOVA results for independent samples, shown in Table 8, examine whether the 

differences obtained were statistically significant according to the TIF values discussed above. 

Table 8. Comparison of TIF values according to three time points for different item bank sizes with 

different IPD sizes and different IPD percentages with sample size n=5000. 

Item Bank 

Size 
Source of Variation 

Sum of 

Squares 
df 

Mean of 

Squares 
F 

Effect 

Size (ɳ2) 

200 

IPD Size 0.000 3 0.000 0.00* 0.00 

IPD Percentage 0.032 3 0.010 38016.00* 0.45 

Measurement 0.002 2 0.001 2376.00* 0.03 

IPD Size*IPD Percentage 0.016 9 0.002 19008.00* 0.22 

IPD Size*Measurement 0.007 6 0.001 8316.00 - 

IPD Percentage*Measurement 0.003 6 0.000 3564.00 - 

IPD Size*IPD Percentage*Measurement 0.007 18 0.000 8316.00 - 

Error 0.004 4752 0.000   

Total 0.071 4799    

500 

IPD Size 0.000 3 0.000 0.00* 0.00 

IPD Percentage 0.002 3 0.000 2376.00* 0.01 

Measurement 0.000 2 0.000 0.00* 0.00 

IPD Size*IPD Percentage 0.000 9 0.000 0.00* 0.00 

IPD Size*Measurement 0.054 6 0.009 64152.00* 0.50 

IPD Percentage*Measurement 0.046 6 0.008 54648.00* 0.43 

IPD Size*IPD Percentage*Measurement 0.000 18 0.000 0.00* 0.00 

Error 0.004 4752 0.000   

Total 0.106 4799    

1000 

IPD Size 0.000 3 0.000 0.00* 0.00 

IPD Percentage 0.001 3 0.000 1584.00* 0.01 

Measurement 0.022 2 0.011 34848.00* 0.20 

IPD Size*IPD Percentage 0.067 9 0.007 106128.00* 0.63 

IPD Size*Measurement 0.001 6 0.000 1584.00 - 

IPD Percentage*Measurement 0.003 6 0.001 4752.00 - 

IPD Size*IPD Percentage*Measurement 0.010 18 0.000 15840.00 - 

Error 0.003 4752 0.000   

Total 0.106 4799    

*p<.05 
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The three-factor ANOVA results for independent samples in terms of TIF values show that both 

the main effect and the effects of the two- and three-factor interactions of the number of 

measurements, IPD size, and IPD percentage have statistically significant effects on TIF for an 

item bank of 500 items and a sample size of 5000. However, these generally possess low effect 

sizes (Cohen, 1988). IPD size, IPD percentage, measurement and interaction effect of IPD 

size*IPD percentage for item bank sizes of 200 and 1000 on TIF values were statistically 

significant (Cohen, 1988). The results of the post-hoc analysis also revealed differences for 

every level of every factor that revealed significant differences. Therefore, the item bank 

containing IPD decreases the amount of information the test provides by increasing the errors. 

Although the TIF values for the 5000 sample size were higher than for the 1000 sample size, 

the samples themselves show neither an increasing nor a decreasing trend. 

4. DISCUSSION and CONCLUSION 

This study examines the impact of IPD on measurement precision and TIF in CAT 

administrations. When the results were examined in terms of measurement precision, the 

increase in the number of measurements, IPD size, and IPD percentage for item bank sizes of 

200, 500 and 1000 items resulted in a decrease in measurement precision because items 

containing IPD in item bank led to drifts in ability estimations. The increase of IPD in the item 

bank resulted in bias values growing in the negative direction and RMSE values growing in the 

positive direction. The cause of positive RMSE values is the square in the RMSE formula. 

When compared with the baseline data set, the highest values of bias and RMSE were obtained 

at the third time point, with an IPD size of 1.00 and items containing an IPD percentage of 20. 

Measurement precision was calculated at its lowest point when conditions for IPD were at the 

highest point. Three-factor ANOVA for independent samples also revealed statistically 

significant results regarding these factors for measurement precision and indicated that the 

factor that affected measurement precision the most was the number of items containing IPD 

in the item bank. Research findings (Abad et al., 2010; Aksu Dünya, 2017; Babcock & Albano, 

2012; Chan et al., 1999; McCoy, 2009; Risk, 2015; Wells et al., 2002) that examine the effects 

of IPD on measurement precision in CAT administrations are consistent with the finding that 

argues that the increase in IPD size results in a decrease in precision. While changes in IPD 

conditions affect measurement precision, an increase in sample size does not result in a 

changing pattern in either the positive or negative bias direction. The RMSE values were 

somewhat greater for the 5000-person sample, but no overall growing or declining trend was 

detected. The study has found that the factor that affected measurement precision the most was 

IPD percentage. While some studies contend that IPD percentage has the greatest impact on 

measurement precision (Babcock & Albano, 2012), others contend that IPD size (Risk, 2015), 

sample size, and IPD percentage (Wells et all, 2002) all influence measurement precision. Using 

the Rasch model, Risk (2015) examined the effect of various IPD conditions on measurement 

precision and discovered that the factor affecting measurement precision the most was IPD size 

rather than the number of items containing IPD in the item bank, but the effect was insignificant. 

Similarly, Wells et al. (2002) stated in their studies which used the 2PLM model, that sample 

size and IPD percentage were factors affecting ability estimations the most. It is worth noting 

that the simulated sample size, item bank size, IPD conditions and the IRT model vary in these 

studies. While the presence of items containing IPD in the item bank negatively affects 

measurement precision in CAT administrations, the factor negatively impacts the value depends 

on the IRT model, sample size, item bank size and IPD conditions.  

When the results were examined in terms of TIF values, the increase in the number of items 

containing IPD in item bank, IPD size and number of measurements in CAT administrations 

resulted in a slight decrease in the amount of information the test provided. The highest TIF 

values under all conditions were obtained in the baseline data set not containing IPD, and the 
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lowest TIF values were obtained at the third time point with the highest rate of IPD conditions. 

As the number of measurements and IPD conditions increased, the amount of information 

provided by the test decreased. However, TIF values are generally marginally higher in the 

5000-person sample than 1000-person sample, but neither an increasing nor a decreasing trend 

was observed within each sample. Similarly, there were no observed increasing or decreasing 

trend in TIF values as the item bank size changed. However, TIF values were affected by the 

number of measurements and IPD conditions. When the statistical significance of obtained TIF 

values was examined, statistically significant results were calculated mostly for the main effect 

and IPD size*IPD percentage factor. While some studies in the literature support the finding of 

the impact of IPD on TIF values (Chan et al., 1999), other studies obtained statistically 

insignificant differences (Deng & Melican, 2010; Guo & Wang, 2003). In a study by Guo and 

Wang (2003), which examined the impacts of parameter drift on CAT using real and simulated 

data, test characteristic curves were compared. However, since measurements were taken at two 

time points, very small differences were obtained in terms of TIF values, which were not 

significant.  

In conclusion, this study has found that IPD under-examined conditions negatively affects 

measurement precision and TIF values. Although the IRT model and CAT administrations 

bring considerable advantages in ability estimations, the importance of developing tests for the 

item bank and reviewing items should be particularly emphasized to carry out ability 

estimations accurately. The chosen way of administrating tests and the models picked for use 

will only produce accurate results if high-quality items are available in the item bank, and these 

items can maintain this characteristic.  

In light of the study's findings, the following recommendations can be made to researchers: 

This research was conducted using simulated data. Using test administrations with real data, 

the impact of IPD on the aforementioned factors could be examined. The examined samples in 

this study were generated using the normal distribution. However, since non-normally 

distributed extreme values are frequently encountered in real-world applications, the effects of 

IPD could also be examined under skewed distribution conditions. This study utilized the Rasch 

model, and there were no restrictions on item exposure. Consequently, the effects of IPD could 

also be examined by employing alternative IRT models and imposing various item exposure 

restrictions. This study examined the conditions under which all individuals may encounter 

IPD-containing items. However, only a subset of individuals may encounter IPD-containing 

items due to their prior test-taking experience or a change in the curriculum. Consequently, 

when IPD-containing items are given to a specific group of individuals in CAT applications, 

the effects of the condition on ability estimates could be investigated. 
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