Research Article
BibTex RIS Cite

TENSILE MODULUS OF LAMINATE COMPOSITES

Year 2018, Volume: 1 Issue: 1, 1 - 6, 30.12.2018

Abstract

Abstract



The influence of Borax/SiC
content on the tensile modulus of Carbon/epoxy and Kevlar/epoxy composites was analyzed
using artificial neural network approach with six neuron in one hidden layer in
this study. The correlation coefficient, R2, mean square error and mean
absolute error was used to state the performance and error evaluation criteria
of the proposed model/system.  Borax and
SiC ratios was changed between 0 and 10%. Addition of SiC caused to an increase
on the tensile modulus of Carbon/epoxy and Kevlar/epoxy composites but Borax
addition induced the decrease of it of these composites.

References

  • 1. Hull, D.; Clyne, T. An introduction to composite materials. Cambridge university press: 1996.2. Cha, K.K. Composite materials: Science and engineering. Springer New York: 2013.3. Chawla, K.K. Composite materials: Science and engineering. Springer.4. Kainer, K.U. Metal matrix composites: Custom-made materials for automotive and aerospace engineering. John Wiley & Sons: 2006.5. Mallick, P.K. Fiber-reinforced composites: Materials, manufacturing, and design. CRC press: 2007.6. Prasad, D.S.; Shoba, C.; Ramanaiah, N. Investigations on mechanical properties of aluminum hybrid composites. Journal of Materials Research and Technology 2014, 3, 79-85.7. On the use of nanocellulose as reinforcement in polymer matrix composites. Composites Science and Technology 2014.8. Stress transfer in polyacrylonitrile/carbon nanotube composite fibers. Polymer 2014.9. Polymer/carbon nanotube nano composite fibers–a review. ACS Applied Materials & Interfaces 2014, 140212091302006.10. Chisholm, N.; Mahfuz, H.; Rangari, V.K.; Ashfaq, A.; Jeelani, S. Fabrication and mechanical characterization of carbon/sic-epoxy nanocomposites. Composite Structures 2005, 67, 115-124.11. Donmez Cavdar, A.; Mengeloğlu, F.; Karakus, K. Effect of boric acid and borax on mechanical, fire and thermal properties of wood flour filled high density polyethylene composites. Measurement 2015, 60, 6-12.12. El-Kady, O.; Fathy, A. Effect of sic particle size on the physical and mechanical properties of extruded al matrix nanocomposites. Materials & Design (1980-2015) 2014, 54, 348-353.13. Gupta, A.; Kumar, A.; Patnaik, A.; Biswas, S. Effect of different parameters on mechanical and erosion wear behavior of bamboo fiber reinforced epoxy composites. International Journal of Polymer Science 2011, 2011.14. Erkliğ, A.; Bulut, M.; Fayzulla, B. Toughening effect of microscale particles on the tensile and vibration properties of s-glass-fiber-reinforced epoxy composites. Mechanics of Composite Materials 2018, 54, 119-128.15. Bulut, M.; Alsaadi, M.; Erklig, A. A comparative study on the tensile and impact properties of kevlar, carbon, and s-glass/epoxy composites reinforced with sic particles. Materials Research Express 2018.16. Alsaadi, M.; Erkliğ, A. Effect of perlite particle contents on delamination toughness of s-glass fiber reinforced epoxy matrix composites. Composites Part B: Engineering 2018.17. Bulut, M.; Alsaadi, M.; Erkliğ, A. Tensile and impact characterization of s-glass/epoxy composite laminates containing microscale borax, perlite, and sewage sludge ash particles. Journal of the Brazilian Society of Mechanical Sciences and Engineering 2018, 40, 199.18. Arsenault, R. Metal-matrix composite: Strengthening mechanisms. Annual report, october 1988-september 1989; Maryland Univ., College Park, MD (USA). Metallurgical Materials Lab.: 1989.
Year 2018, Volume: 1 Issue: 1, 1 - 6, 30.12.2018

Abstract

References

  • 1. Hull, D.; Clyne, T. An introduction to composite materials. Cambridge university press: 1996.2. Cha, K.K. Composite materials: Science and engineering. Springer New York: 2013.3. Chawla, K.K. Composite materials: Science and engineering. Springer.4. Kainer, K.U. Metal matrix composites: Custom-made materials for automotive and aerospace engineering. John Wiley & Sons: 2006.5. Mallick, P.K. Fiber-reinforced composites: Materials, manufacturing, and design. CRC press: 2007.6. Prasad, D.S.; Shoba, C.; Ramanaiah, N. Investigations on mechanical properties of aluminum hybrid composites. Journal of Materials Research and Technology 2014, 3, 79-85.7. On the use of nanocellulose as reinforcement in polymer matrix composites. Composites Science and Technology 2014.8. Stress transfer in polyacrylonitrile/carbon nanotube composite fibers. Polymer 2014.9. Polymer/carbon nanotube nano composite fibers–a review. ACS Applied Materials & Interfaces 2014, 140212091302006.10. Chisholm, N.; Mahfuz, H.; Rangari, V.K.; Ashfaq, A.; Jeelani, S. Fabrication and mechanical characterization of carbon/sic-epoxy nanocomposites. Composite Structures 2005, 67, 115-124.11. Donmez Cavdar, A.; Mengeloğlu, F.; Karakus, K. Effect of boric acid and borax on mechanical, fire and thermal properties of wood flour filled high density polyethylene composites. Measurement 2015, 60, 6-12.12. El-Kady, O.; Fathy, A. Effect of sic particle size on the physical and mechanical properties of extruded al matrix nanocomposites. Materials & Design (1980-2015) 2014, 54, 348-353.13. Gupta, A.; Kumar, A.; Patnaik, A.; Biswas, S. Effect of different parameters on mechanical and erosion wear behavior of bamboo fiber reinforced epoxy composites. International Journal of Polymer Science 2011, 2011.14. Erkliğ, A.; Bulut, M.; Fayzulla, B. Toughening effect of microscale particles on the tensile and vibration properties of s-glass-fiber-reinforced epoxy composites. Mechanics of Composite Materials 2018, 54, 119-128.15. Bulut, M.; Alsaadi, M.; Erklig, A. A comparative study on the tensile and impact properties of kevlar, carbon, and s-glass/epoxy composites reinforced with sic particles. Materials Research Express 2018.16. Alsaadi, M.; Erkliğ, A. Effect of perlite particle contents on delamination toughness of s-glass fiber reinforced epoxy matrix composites. Composites Part B: Engineering 2018.17. Bulut, M.; Alsaadi, M.; Erkliğ, A. Tensile and impact characterization of s-glass/epoxy composite laminates containing microscale borax, perlite, and sewage sludge ash particles. Journal of the Brazilian Society of Mechanical Sciences and Engineering 2018, 40, 199.18. Arsenault, R. Metal-matrix composite: Strengthening mechanisms. Annual report, october 1988-september 1989; Maryland Univ., College Park, MD (USA). Metallurgical Materials Lab.: 1989.
There are 1 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Halil İbrahim Kurt

Necip Fazıl Yılmaz

Murat Oduncuoğlu

Publication Date December 30, 2018
Acceptance Date August 29, 2018
Published in Issue Year 2018 Volume: 1 Issue: 1

Cite

APA Kurt, H. İ., Yılmaz, N. F., & Oduncuoğlu, M. (2018). TENSILE MODULUS OF LAMINATE COMPOSITES. The International Journal of Materials and Engineering Technology, 1(1), 1-6.
AMA Kurt Hİ, Yılmaz NF, Oduncuoğlu M. TENSILE MODULUS OF LAMINATE COMPOSITES. TIJMET. December 2018;1(1):1-6.
Chicago Kurt, Halil İbrahim, Necip Fazıl Yılmaz, and Murat Oduncuoğlu. “TENSILE MODULUS OF LAMINATE COMPOSITES”. The International Journal of Materials and Engineering Technology 1, no. 1 (December 2018): 1-6.
EndNote Kurt Hİ, Yılmaz NF, Oduncuoğlu M (December 1, 2018) TENSILE MODULUS OF LAMINATE COMPOSITES. The International Journal of Materials and Engineering Technology 1 1 1–6.
IEEE H. İ. Kurt, N. F. Yılmaz, and M. Oduncuoğlu, “TENSILE MODULUS OF LAMINATE COMPOSITES”, TIJMET, vol. 1, no. 1, pp. 1–6, 2018.
ISNAD Kurt, Halil İbrahim et al. “TENSILE MODULUS OF LAMINATE COMPOSITES”. The International Journal of Materials and Engineering Technology 1/1 (December 2018), 1-6.
JAMA Kurt Hİ, Yılmaz NF, Oduncuoğlu M. TENSILE MODULUS OF LAMINATE COMPOSITES. TIJMET. 2018;1:1–6.
MLA Kurt, Halil İbrahim et al. “TENSILE MODULUS OF LAMINATE COMPOSITES”. The International Journal of Materials and Engineering Technology, vol. 1, no. 1, 2018, pp. 1-6.
Vancouver Kurt Hİ, Yılmaz NF, Oduncuoğlu M. TENSILE MODULUS OF LAMINATE COMPOSITES. TIJMET. 2018;1(1):1-6.