Research Article
BibTex RIS Cite

A FLOW CHANNEL WITH NAFION MEMBRANE MATERIAL DESIGN OF PEM FUEL CELL

Year 2019, Volume: 5 Issue: 5, 456 - 468, 22.09.2019
https://doi.org/10.18186/thermal.624085

Abstract

This study is about
flow channels in the design of the PEM (Proton Exchange Membrane) fuel cell
system. In the experimental study, different flow geometry, Nafion membrane,
and bipolar plate gas diffusion channel designs are available. In some cases, the
techno-economic analysis method is applied. Cost analysis for the design has
also been made and compared with similar studies. It was obtained that the new
flow channel design increased the PEM fuel cell performance. A unit energy cost
was set to 42.6 [$/W]. When a similar system was implemented for a year, the annual
energy cost was calculated to be 25.48 [$/y]. The aim of this study is to
determine the cost-benefit analysis of PEM fuel cell with a combined flow
channel design. In addition, the simple payback period was found to be 0.81
[y]. Thus, the PEM fuel cell was determined by the techno-economic analysis
calculation, in which energy savings can be achieved by the flow channel
design.



 

References

  • [1] Najafi B., Mamaghani A. H., Baricci A., Rinaldi F., Casalegno A. Mathematical modelling and parametric study on a 30 kWel high temperature PEM fuel cell based residential micro cogeneration plant. International Journal of Hydrogen Energy, 40 (3): 1569-1583, (2015).
  • [2] Saeed W., Warkozek G. Modeling and analysis of renewable PEM fuel cell system. Energy Procedia, 74: 87-101, (2015).
  • [3] Liso V., Araya S. S., Olesen A. C., Nielsen M. P., Kaer S. R. Modeling and experimental validation of water mass balance in a PEM fuel cell stack. International Journal of Hydrogen Energy, 41 (4): 3079-3092, (2016).
  • [4] Rosich A., Sarrate R., Nejjari F. On-line model-based fault detection and isolation for PEM fuel cell stack systems, Applied Mathematical Modelling, 38 (11–12): 2744-2757, (2014).
  • [5] Taleb M. A., Godoy E., Bethoux O., Irofti D. PEM fuel cell fractional order modeling and identification, IFAC Proceedings, 47 (3): 2125-2131, (2014).
  • [6] Mamaghani A. H., Najafi B., Casalegno A., Rinaldi F. Predictive modelling and adaptive long-term performance optimization of an HT-PEM fuel cell based micro combined heat and power (CHP) plant, Applied Energy, 192: 519-529, (2017).
  • [7] Taner T. Energy and exergy analyze of PEM fuel cell: A case study of modeling and simulations. Energy, 143: 284-294, (2018).
  • [8] Arshad A., Ali H. M., Habib A., Bashir M. A., Jabbal M., Yan Y. Energy and exergy analysis of fuel cells: A review. Thermal Science and Engineering Progress, 9: 308-321, (2019).
  • [9] Baniasadi E. Toghyani S., Afshari E. Exergetic and exergoeconomic evaluation of a trigeneration system based on natural gas-PEM fuel cell, International Journal of Hydrogen Energy, 42 (8): 5327-5339, (2017).
  • [10] Najafi B., Mamaghani A. H., Rinaldi F., Casalegno A. Fuel partialization and power/heat shifting strategies applied to a 30 kWel high temperature PEM fuel cell based residential micro cogeneration plant. International Journal of Hydrogen Energy, 40 (41): 14224-14234, (2015).
  • [11] Chahartaghi M., Kharkeshi B. A. Performance analysis of a combined cooling, heating and power system with PEM fuel cell as a prime mover. Applied Thermal Engineering, 128: 805-817, (2018).
  • [12] Zhang X., Chen S., Xia Z., Zhang X., Liu H. Performance enhancements of PEM fuel cells with narrower outlet channels in interdigitated flow field. Energy Procedia, 158: 1412-1417, (2019).
  • [13] Najafi B., Mamaghani A. H., Rinaldi F., Casalegno A. Long-term performance analysis of an HT-PEM fuel cell based micro-CHP system: Operational strategies. Applied Energy, 147: 582-592, (2015).
  • [14] Taner T. The micro-scale modeling by experimental study in PEM fuel cell. Journal of Thermal Engineering, 3(6): 1515-1526, (2017).
  • [15] Wong C.Y., Wong W.Y., Ramya K., Khalid M., Loh K.S., Daud W.R.W., Lim K.L., Walvekar R., Kadhum A.A.H. Additives in proton exchange membranes for low- and high-temperature fuel cell applications: A review. International Journal of Hydrogen Energy, 44 (12): 6116-6135, (2019).
  • [16] Sankar K., Jana A. K. Nonlinear multivariable sliding mode control of a reversible PEM fuel cell integrated system. Energy Conversion and Management, 171: 541-565, (2018).
  • [17] Bao C., Ouyang M., Yl B., Analysis of water management in proton exchange membrane fuel cells, Tsinghua Science and Technology, 11 1: 54-64, (2006).
  • [18] Zhang F. Y., Yang X. G., Wang C. Y., Liquid water removal from a polymer electrolyte fuel cell, Journal Electrochemical, 153 (2): 225-232, (2006).
  • [19] Zhang F. Y., Advani S. G., Prasad A. K., Performance of a metallic gas diffusion layer for PEM fuel cells, Journal of Power Sources, 176 (1): 293–298, (2008).
  • [20] Arbabi F., Roshandel R., Karimi Moghaddam G., Numerical modeling of an innovative bipolar plate design based on the leaf venation patterns for PEM fuel cells, IJE Transactıons C: Aspects, 25 (3): 177-186, (2012).
  • [21] Dokkar B., Settou N., Imine O., Negrou B., Saifi N., Chennouf N., Simulation of water management in the membrane of PEM fuel cell, EFEEA’10 International Symposium on Environment Friendly Energies in Electrical Applications, Ghardaia, Algeria, 1-4, (2010).
  • [22] Mirzaei F., Parnian M.J., Rowshanzamir S., Durability investigation and performance study of hydrothermal synthesized platinum-multi walled carbon nanotube nanocomposite catalyst for proton exchange membrane fuel cell, Energy, 138: 696-705, (2017).
  • [23] La Manna J. M., Chakraborty S., Zhang F. Y., Mench M., Gagliardo J., and Owejan J., Isolation of transport mechanisms in PEFCs with high resolution neutron imaging, Electrochemical Society ECS Transactions, 41 (1): 329-336, (2011).
  • [24] Kong I.M., Jung A., Kim Y.S., Kim M.S., Numerical investigation on double gas diffusion backing layer functionalized on water removal in a proton exchange membrane fuel cell, Energy, 120: 478-487, (2017).
  • [25] Taner T., Naqvi S. A. H., Ozkaymak M. Techno-economic analysis of a more efficient hydrogen generation system prototype: A case study of PEM electrolyzer with Cr-C Coated SS304 bipolar plates. Fuel Cells, 19 (1): 19-26. (2019).
  • [26] Taner T. Optimisation processes of energy efficiency for a drying plant: A case of study for Turkey. Applied Thermal Engineering, 80: 247-260, (2015).
  • [27] Taner T., Sivrioglu M. Thermoeconomic analysis for the power plants of sugar factories. Journal of the Faculty of Engineering and Architecture of Gazi University, 29 (2): 407–414, (2014).
  • [28] Kim D.J. A new thermoeconomic methodology for energy systems. Energy, 35: 410–422, (2010).
  • [29] Dahlhausen M., Heidarinejad M., Srebric J. Building energy retrofits under capital constraints and greenhouse gas pricing scenarios. Energy and Buildings, 107: 407–416, (2015).
  • [30] Weissbach D., Ruprecht G., Huke A., Czerki K., Gottlieb S., Hussein A. Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants. Energy, 52: 210-221, (2013).
  • [31] Zare V. A comparative exergoeconomic analysis of different ORC configurations for binary geothermal power plants. Energy Conversion and Management, 105: 127–138, (2015).
  • [32] Pragma Industries USB Eload yazılımı, (2016).
  • [33] Haghighi M., Sharifhassan F. Exergy analysis and optimization of a high temperature proton exchange membrane fuel cell using genetic algorithm, Case Studies in Thermal Engineering, 8: 207-217, (2016).
  • [34] Zhang X., Guo J., Chen J. The parametric optimum analysis of a proton exchange membrane (PEM) fuel cell and its load matching, Energy, 35: 5294-5299, (2010).
  • [35] Ahmadi M. H., Mohammadi A., Pourfayaz F., Mehrpooya M., Bidi M., Valero A., Uson S. Thermodynamic analysis and optimization of a waste heat recovery system for proton exchange membrane fuel cell using transcritical carbon dioxide cycle and cold energy of liquefied natural gas, Journal of Natural Gas Science and Engineering, 34: 428-438, (2016)
  • [36] Gimba I. D., Abdulkareem A. S., Jimoh A., Afolabi A. S. Theoretical energy and exergy analyses of proton exchange membrean fuel cell by computer simulation, Journal of Applied Chemistry, Volume 2016: 1-15, (2016)
  • [37] Dincer I., Rosen M. A., Exergy. 2nd ed. Chapter 15, Elsevier, Oxford, ISBN 978-0-08-097089-9, (2013).
  • [38] Larmine J., Dicks A. Full cell systems explained, Second Edition, John Wiley & Sons Ltd., Chester, ISBN 0-470-84857-X, (2003).
  • [39] Purnima P., Jayanti S. A high-efficiency, auto-thermal system for on board hydrogen production for low temperature PEM fuel cells using dual reforming of ethanol, International of Hydrogen Energy, 41: 13800-13810, (2016).
  • [40] Wilberforce T., El-Hassan Z., Khatib F.N., Al Makky A., Mooney J., Barouaji A., Carton J. G., Olabi Abdul-Ghani. Development of Bi-polar plate design of PEM fuel cell using CFD techniques, International Journal of Hydrogen Energy, 42 (40): 25663-25685, (2017).
Year 2019, Volume: 5 Issue: 5, 456 - 468, 22.09.2019
https://doi.org/10.18186/thermal.624085

Abstract

References

  • [1] Najafi B., Mamaghani A. H., Baricci A., Rinaldi F., Casalegno A. Mathematical modelling and parametric study on a 30 kWel high temperature PEM fuel cell based residential micro cogeneration plant. International Journal of Hydrogen Energy, 40 (3): 1569-1583, (2015).
  • [2] Saeed W., Warkozek G. Modeling and analysis of renewable PEM fuel cell system. Energy Procedia, 74: 87-101, (2015).
  • [3] Liso V., Araya S. S., Olesen A. C., Nielsen M. P., Kaer S. R. Modeling and experimental validation of water mass balance in a PEM fuel cell stack. International Journal of Hydrogen Energy, 41 (4): 3079-3092, (2016).
  • [4] Rosich A., Sarrate R., Nejjari F. On-line model-based fault detection and isolation for PEM fuel cell stack systems, Applied Mathematical Modelling, 38 (11–12): 2744-2757, (2014).
  • [5] Taleb M. A., Godoy E., Bethoux O., Irofti D. PEM fuel cell fractional order modeling and identification, IFAC Proceedings, 47 (3): 2125-2131, (2014).
  • [6] Mamaghani A. H., Najafi B., Casalegno A., Rinaldi F. Predictive modelling and adaptive long-term performance optimization of an HT-PEM fuel cell based micro combined heat and power (CHP) plant, Applied Energy, 192: 519-529, (2017).
  • [7] Taner T. Energy and exergy analyze of PEM fuel cell: A case study of modeling and simulations. Energy, 143: 284-294, (2018).
  • [8] Arshad A., Ali H. M., Habib A., Bashir M. A., Jabbal M., Yan Y. Energy and exergy analysis of fuel cells: A review. Thermal Science and Engineering Progress, 9: 308-321, (2019).
  • [9] Baniasadi E. Toghyani S., Afshari E. Exergetic and exergoeconomic evaluation of a trigeneration system based on natural gas-PEM fuel cell, International Journal of Hydrogen Energy, 42 (8): 5327-5339, (2017).
  • [10] Najafi B., Mamaghani A. H., Rinaldi F., Casalegno A. Fuel partialization and power/heat shifting strategies applied to a 30 kWel high temperature PEM fuel cell based residential micro cogeneration plant. International Journal of Hydrogen Energy, 40 (41): 14224-14234, (2015).
  • [11] Chahartaghi M., Kharkeshi B. A. Performance analysis of a combined cooling, heating and power system with PEM fuel cell as a prime mover. Applied Thermal Engineering, 128: 805-817, (2018).
  • [12] Zhang X., Chen S., Xia Z., Zhang X., Liu H. Performance enhancements of PEM fuel cells with narrower outlet channels in interdigitated flow field. Energy Procedia, 158: 1412-1417, (2019).
  • [13] Najafi B., Mamaghani A. H., Rinaldi F., Casalegno A. Long-term performance analysis of an HT-PEM fuel cell based micro-CHP system: Operational strategies. Applied Energy, 147: 582-592, (2015).
  • [14] Taner T. The micro-scale modeling by experimental study in PEM fuel cell. Journal of Thermal Engineering, 3(6): 1515-1526, (2017).
  • [15] Wong C.Y., Wong W.Y., Ramya K., Khalid M., Loh K.S., Daud W.R.W., Lim K.L., Walvekar R., Kadhum A.A.H. Additives in proton exchange membranes for low- and high-temperature fuel cell applications: A review. International Journal of Hydrogen Energy, 44 (12): 6116-6135, (2019).
  • [16] Sankar K., Jana A. K. Nonlinear multivariable sliding mode control of a reversible PEM fuel cell integrated system. Energy Conversion and Management, 171: 541-565, (2018).
  • [17] Bao C., Ouyang M., Yl B., Analysis of water management in proton exchange membrane fuel cells, Tsinghua Science and Technology, 11 1: 54-64, (2006).
  • [18] Zhang F. Y., Yang X. G., Wang C. Y., Liquid water removal from a polymer electrolyte fuel cell, Journal Electrochemical, 153 (2): 225-232, (2006).
  • [19] Zhang F. Y., Advani S. G., Prasad A. K., Performance of a metallic gas diffusion layer for PEM fuel cells, Journal of Power Sources, 176 (1): 293–298, (2008).
  • [20] Arbabi F., Roshandel R., Karimi Moghaddam G., Numerical modeling of an innovative bipolar plate design based on the leaf venation patterns for PEM fuel cells, IJE Transactıons C: Aspects, 25 (3): 177-186, (2012).
  • [21] Dokkar B., Settou N., Imine O., Negrou B., Saifi N., Chennouf N., Simulation of water management in the membrane of PEM fuel cell, EFEEA’10 International Symposium on Environment Friendly Energies in Electrical Applications, Ghardaia, Algeria, 1-4, (2010).
  • [22] Mirzaei F., Parnian M.J., Rowshanzamir S., Durability investigation and performance study of hydrothermal synthesized platinum-multi walled carbon nanotube nanocomposite catalyst for proton exchange membrane fuel cell, Energy, 138: 696-705, (2017).
  • [23] La Manna J. M., Chakraborty S., Zhang F. Y., Mench M., Gagliardo J., and Owejan J., Isolation of transport mechanisms in PEFCs with high resolution neutron imaging, Electrochemical Society ECS Transactions, 41 (1): 329-336, (2011).
  • [24] Kong I.M., Jung A., Kim Y.S., Kim M.S., Numerical investigation on double gas diffusion backing layer functionalized on water removal in a proton exchange membrane fuel cell, Energy, 120: 478-487, (2017).
  • [25] Taner T., Naqvi S. A. H., Ozkaymak M. Techno-economic analysis of a more efficient hydrogen generation system prototype: A case study of PEM electrolyzer with Cr-C Coated SS304 bipolar plates. Fuel Cells, 19 (1): 19-26. (2019).
  • [26] Taner T. Optimisation processes of energy efficiency for a drying plant: A case of study for Turkey. Applied Thermal Engineering, 80: 247-260, (2015).
  • [27] Taner T., Sivrioglu M. Thermoeconomic analysis for the power plants of sugar factories. Journal of the Faculty of Engineering and Architecture of Gazi University, 29 (2): 407–414, (2014).
  • [28] Kim D.J. A new thermoeconomic methodology for energy systems. Energy, 35: 410–422, (2010).
  • [29] Dahlhausen M., Heidarinejad M., Srebric J. Building energy retrofits under capital constraints and greenhouse gas pricing scenarios. Energy and Buildings, 107: 407–416, (2015).
  • [30] Weissbach D., Ruprecht G., Huke A., Czerki K., Gottlieb S., Hussein A. Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants. Energy, 52: 210-221, (2013).
  • [31] Zare V. A comparative exergoeconomic analysis of different ORC configurations for binary geothermal power plants. Energy Conversion and Management, 105: 127–138, (2015).
  • [32] Pragma Industries USB Eload yazılımı, (2016).
  • [33] Haghighi M., Sharifhassan F. Exergy analysis and optimization of a high temperature proton exchange membrane fuel cell using genetic algorithm, Case Studies in Thermal Engineering, 8: 207-217, (2016).
  • [34] Zhang X., Guo J., Chen J. The parametric optimum analysis of a proton exchange membrane (PEM) fuel cell and its load matching, Energy, 35: 5294-5299, (2010).
  • [35] Ahmadi M. H., Mohammadi A., Pourfayaz F., Mehrpooya M., Bidi M., Valero A., Uson S. Thermodynamic analysis and optimization of a waste heat recovery system for proton exchange membrane fuel cell using transcritical carbon dioxide cycle and cold energy of liquefied natural gas, Journal of Natural Gas Science and Engineering, 34: 428-438, (2016)
  • [36] Gimba I. D., Abdulkareem A. S., Jimoh A., Afolabi A. S. Theoretical energy and exergy analyses of proton exchange membrean fuel cell by computer simulation, Journal of Applied Chemistry, Volume 2016: 1-15, (2016)
  • [37] Dincer I., Rosen M. A., Exergy. 2nd ed. Chapter 15, Elsevier, Oxford, ISBN 978-0-08-097089-9, (2013).
  • [38] Larmine J., Dicks A. Full cell systems explained, Second Edition, John Wiley & Sons Ltd., Chester, ISBN 0-470-84857-X, (2003).
  • [39] Purnima P., Jayanti S. A high-efficiency, auto-thermal system for on board hydrogen production for low temperature PEM fuel cells using dual reforming of ethanol, International of Hydrogen Energy, 41: 13800-13810, (2016).
  • [40] Wilberforce T., El-Hassan Z., Khatib F.N., Al Makky A., Mooney J., Barouaji A., Carton J. G., Olabi Abdul-Ghani. Development of Bi-polar plate design of PEM fuel cell using CFD techniques, International Journal of Hydrogen Energy, 42 (40): 25663-25685, (2017).
There are 40 citations in total.

Details

Primary Language English
Journal Section Articles
Authors

Tolga Taner

Publication Date September 22, 2019
Submission Date May 15, 2019
Published in Issue Year 2019 Volume: 5 Issue: 5

Cite

APA Taner, T. (2019). A FLOW CHANNEL WITH NAFION MEMBRANE MATERIAL DESIGN OF PEM FUEL CELL. Journal of Thermal Engineering, 5(5), 456-468. https://doi.org/10.18186/thermal.624085
AMA Taner T. A FLOW CHANNEL WITH NAFION MEMBRANE MATERIAL DESIGN OF PEM FUEL CELL. Journal of Thermal Engineering. September 2019;5(5):456-468. doi:10.18186/thermal.624085
Chicago Taner, Tolga. “A FLOW CHANNEL WITH NAFION MEMBRANE MATERIAL DESIGN OF PEM FUEL CELL”. Journal of Thermal Engineering 5, no. 5 (September 2019): 456-68. https://doi.org/10.18186/thermal.624085.
EndNote Taner T (September 1, 2019) A FLOW CHANNEL WITH NAFION MEMBRANE MATERIAL DESIGN OF PEM FUEL CELL. Journal of Thermal Engineering 5 5 456–468.
IEEE T. Taner, “A FLOW CHANNEL WITH NAFION MEMBRANE MATERIAL DESIGN OF PEM FUEL CELL”, Journal of Thermal Engineering, vol. 5, no. 5, pp. 456–468, 2019, doi: 10.18186/thermal.624085.
ISNAD Taner, Tolga. “A FLOW CHANNEL WITH NAFION MEMBRANE MATERIAL DESIGN OF PEM FUEL CELL”. Journal of Thermal Engineering 5/5 (September 2019), 456-468. https://doi.org/10.18186/thermal.624085.
JAMA Taner T. A FLOW CHANNEL WITH NAFION MEMBRANE MATERIAL DESIGN OF PEM FUEL CELL. Journal of Thermal Engineering. 2019;5:456–468.
MLA Taner, Tolga. “A FLOW CHANNEL WITH NAFION MEMBRANE MATERIAL DESIGN OF PEM FUEL CELL”. Journal of Thermal Engineering, vol. 5, no. 5, 2019, pp. 456-68, doi:10.18186/thermal.624085.
Vancouver Taner T. A FLOW CHANNEL WITH NAFION MEMBRANE MATERIAL DESIGN OF PEM FUEL CELL. Journal of Thermal Engineering. 2019;5(5):456-68.

Cited By



























IMPORTANT NOTE: JOURNAL SUBMISSION LINK http://eds.yildiz.edu.tr/journal-of-thermal-engineering