Research Article
BibTex RIS Cite

Metal malzeme yüzeylerinin yapıştırma işlemlerinde atmosferik basınçlı plazma uygulamasının etkisi

Year 2023, Volume: 38 Issue: 2, 665 - 678, 07.10.2022
https://doi.org/10.17341/gazimmfd.1025228

Abstract

Atmosferik basınçlı plazma (ABP) uygulamaları, hızlı ve kolay-stabil şekilde malzeme yüzeylerine uygulanabilirliğinden ve vakum altında yapılan plazma uygulamalarına göre çok sayıda avantaja sahip olduğundan dolayı günümüzde birçok alanda ön plana çıkmaya başlamıştır. ABP ile malzemelerin yüzey enerjilerinin, yapışma davranışlarının ve yüzey mekanik özelliklerinin iyileştirilmesi mümkündür. Bu bağlamda metal malzemelerin yapıştırılması işleminde daha detaylı araştırmalar yapılarak süreç parametrelerinin ortaya konulmasına ihtiyaç duyulmaktadır. Bu çalışmada ABP uygulamasının, galvaniz kaplamalı çelikler (H300LAD) ile paslanmaz çeliklerin (H300LA) yapıştırma bağının dayanımları üzerindeki etkileri araştırılmıştır. Deney parametreleri olarak iki farklı malzeme (H300LAD ve H300LA), iki farklı yapıştırıcı (Marocol 18576 ve Erde G-Force) ve üç farklı plazma uygulama hızı (5 mm/s, 10 mm/s ve 15 mm/s) belirlenmiştir. Sonuçlar, ABP uygulamasının metal yapıştırma işleminde iyileşmeler sağladığını göstermektedir.

Thanks

Malzeme numunelerini sağlayan Borçelik A.Ş., yapıştırıcı malzeme destekleri için ERBAB Otomotiv Ltd. Şti., çekme testlerinin gerçekleştirilmesindeki destekleri için Destek Otomotiv Yan Sanayi ve Tic. A.Ş. ve plazma uygulama cihazları ve özel mürekkep testleri için de FCB Ar-Ge Ltd. Şti. firmalarına teşekkür ederiz.

References

  • Küçük D., Ercan U.K., Köseoğlu S., The fourth state of matter: Plasma and applications of atmospheric pressure cold plasmas ın dentistry, Yeditepe Dental Journal, 14 (3), 125-136, 2018.
  • Park S.J., Kim B.J., Influence of oxygen plasma treatment on hydrogen chloride removal of activated carbon fibers, J. Colloid Interface Sci., 275 (2), 590-595, 2004.
  • Kim J.S., Kim Y.E., Lee K.H., Effects of atmospheric plasma treatment on the interfacial characteristics of ethylene–vinyl acetate/polyurethane composites, J. Colloid Interface Sci., 271 (1), 187-191, 2004.
  • Lynch J.B., Spence P.D., Baker D.E., Postlethwaite T.A., Atmospheric pressure plasma treatment of polyethylene via a pulse dielectric barrier discharge: Comparison using various gas compositions versus corona discharge in air, J. Appl. Polym. Sci., 71 (2), 319-331, 1999.
  • Shenton M.J., Stevens G.C., Wright N.P., Duan X. J., Chemical-surface modification of polymers using atmospheric pressure nonequilibrium plasmas and comparisons with vacuum plasmas, J. Polym. Sci., Part A: Polym. Chem., 40 (1), 95-109, 2002.
  • Dallı E., Atmosferik Basınç Soğuk Plazma Jetler, Master Tezi, Eskişehir Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir, 2013.
  • Øiseth S.K., Krozer A., Kasemo B., Lausmaa J., Surface modification of spin-coated high-density polyethylene films by argon and oxygen glow discharge plasma treatments, Appl. Surf. Sci., 202 (1-2), 92-103, 2002.
  • Boudou J.P., Paredes J.I., Cuesta A., Martinez-Alonso A., Tascon J.M.D., Oxygen plasma modification of pitch-based isotropic carbon fibres, Carbon, 41 (1), 41-56, 2003.
  • Tang S., Lu N., Myung S.W., Choi H.S., Enhancement of adhesion strength between two AISI 316 L stainless steel plates through atmospheric pressure plasma treatment, Surf. Coat. Technol., 200 (18), 5220-5228, 2006.
  • Tang S., Kwon O.J., Lu N., Choi H.S., Surface characteristics of AISI 304L stainless steel after an atmospheric pressure plasma treatment, Surf. Coat. Technol., 195 (2), 298-306, 2005.
  • Polini W., Sorrentino L., Improving the wettability of 2024 aluminium alloy by means of cold plasma treatment, Appl. Surf. Sci., 214 (1), 232-242, 2003.
  • Polini W., Sorrentino L., Analysis of adhesion in an aggressive environment of a protective paint coating on an aluminium alloy surface treated by air cold plasma, J. Adhes. Sci. Technol., 18 (14), 1643-1661, 2004.
  • Sorrentino L., Carrino L., 2024 aluminium alloy wettability and superficial cleaning improvement by air cold plasma treatment, J. Mater. Process. Technol., 209 (3), 1400-1409, 2009.
  • Sorrentino L., Carrino L., Influence of process parameters of oxygen cold plasma treatment on wettability ageing time of 2024 aluminium alloy, Int. J. Adhes. Adhes., 29 (2), 136-143, 2009.
  • Prysiazhnyi V., Svoboda T., Dvorak M., Klima M., Aluminum surface treatment by the RF plasma pencil, Surf. Coat. Technol., 206 (19-20), 4140-4145, 2012.
  • Prysiazhnyi V., Zaporojchenko V., Kersten H., Cernak M., Influence of humidity on atmospheric pressure air plasma treatment of aluminium surfaces, Appl. Surf. Sci., 258 (14), 5467-5471, 2012.
  • Williams D.F., Kellar E.J.C., Jesson D.A., Watts J.F., Surface analysis of 316 stainless steel treated with cold atmospheric plasma, Appl. Surf. Sci., 403, 240-247, 2017.
  • Latifi A., Imani M., Khorasani M.T., Joupari M.D., Plasma surface oxidation of 316L stainless steel for improving adhesion strength of silicone rubber coating to metal substrate, Appl. Surf. Sci., 320, 471-481, 2014.
  • Kim M.C., Song D.K., Shin H.S., Baeg S.H., Kim G.S., Boo J.H., Han J.G., Yang S.H., Surface modification for hydrophilic property of stainless steel treated by atmospheric-pressure plasma jet, Surf. Coat. Technol., 171 (1), 312-316, 2003.
  • Preedy E.C., Brousseau E., Evans S.L., Perni S., Prokopovich P., Adhesive forces and surface properties of cold gas plasma treated UHMWPE, Colloids Surf., A, 460, 83-89, 2014.
  • Lin J.W., Chang H.C., Surface modification of SUS304 stainless steel by atmospheric pressure Ar/N2/O2 plasma, Nucl. Instrum. Methods Phys. Res., Sect. B, 269 (15), 1801-1808, 2011.
  • Mui T.S.M., Silva L.L.G., Prysiazhnyi V., Kostov K.G., Surface modification of aluminium alloys by atmospheric pressure plasma treatments for enhancement of their adhesion properties, Surf. Coat. Technol., 312, 32-36, 2017.
  • Acero M.A.C., Lopez L.C., Effect of plasma treatment in Aluminum and composites bonding joints: Shear load tests results, Procedia Manuf., 13, 183-189, 2017.
  • Maroofi A., Safa N.N., Ghomi H., Atmospheric air plasma jet for improvement of paint adhesion to aluminium surface in industrial applications, Int. J. Adhes. Adhes., 98 (9-10), 102554, 2020.
  • Ku J.H., Jung I.H., Rhee K.Y., Park S.J., Atmospheric pressure plasma treatment of polypropylene to improve the bonding strength of polypropylene/aluminum composites, Composites, Part B, 45 (1), 1282-1287, 2013.
  • Brzhozovskii B., Brovkova M., Gots I., Zinina H., Martynov V., Study of the low-temperature plasma treatment effect on the structure, physical and chemical surface characteristics of 40X13 steel, Heliyon, 5 (9), e02388, 2019.
  • Rodriguez-Villanueva C., Encinas N., Abenojar J., Martinez M.A., Assessment of atmospheric plasma treatment cleaning effect on steel surfaces, Surf. Coat. Technol., 236, 450-456, 2013.
  • Luna P., Marino A., Lizarazo-Marriaga J., Beltran O., Dry etching plasma applied to fique fibers: influence on their mechanical properties and surface appearance, Procedia Eng., 200, 141-147, 2017.
  • Kurtuldu F., Altuncu E., Surface Wettability Properties of 304 Stainless Steel Treated by Atmospheric-Pressure Plasma System, 4th International Symposium on Innovative Technologies in Engineering and Science, Antalya-Türkiye, 1350-1358, 3-5 Kasım, 2016.
  • Seyrek Y., Soğuk plazma tekniklerinin lifli kompozit performansına etkilerinin araştırılması, Master Tezi, Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, İzmir, 2016.
  • Esen S.G., Otomobil tampon boya hatlarında plazma yüzey aktivasyonu ile yüzey enerjisinin kontrolü ve uygulanabilirliğinin araştırılması, Master Tezi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Sakarya, 2016.
  • Mandolfino C., Lertora E., Gambaro C., Effect of cold plasma treatment on surface roughness and bonding strength of polymeric substrates, Key Eng. Mater., 611-612, 1484-1493, 2014.
  • Mandolfino C., Lertora E., Genna S., Leone C., Gambaro C., Effect of laser and plasma surface cleaning on mechanical properties of adhesive bonded joints, Procedia CIRP, 33, 458-463, 2015.
  • Moroni F., Musiari F., Sciancalepore C., Messori M., Influence of atmospheric pressure plasma process parameters on the mechanical behavior of thermoplastic joints, Int. J. Adhes. Adhes., 102, 102650, 2020.
  • Lee C.J., Lee S.K., Ko D.C., Kim D.J., Kim B.M., Evaluation of surface and bonding properties of cold rolled steel sheet pretreated by Ar/O2 atmospheric pressure plasma at room temperature, J. Mater. Process. Technol., 209 (10), 4769-4775, 2009.
  • Saleema N., Gallant D., Atmospheric pressure plasma oxidation of AA6061-T6 aluminum alloy surface for strong and durable adhesive bonding applications, Appl. Surf. Sci., 282, 98-104, 2013.
  • Relyon Plasma. Piezobrush PZ2. http://www.relyon-plasma.com/relyon-plasma-produkte/piezobrush-pz2/?lang=en. Erişim tarihi Kasım 7, 2021.
  • Aydar A.Y., Rodriguez-Martinez V., Farkas B.E., Determination and modeling of contact angle of canola oil and olive oil on a PTFE surface at elevated temperatures using air or steam as surrounding media, LWT Food Sci. Technol., 65 (5), 304-310, 2016.
  • Adamson A.W., The Physical Chemistry of Surfaces, 5th Edition, Wiley Interscience, New York, A.B.D., 1990.
  • Mirsasaani S.S., Manjili H.M., Baheiraei N., Dental Nanocomposites, Advances in Diverse Industrial Applications of Nanocomposites, Boreddy Reddy, Chapter 19, 2011.
  • Bostik. Marocol 18576. http://www.bostik.com/uk/en/catalog/product/construction/emea/uk/product-marocol-18576/. Erişim tarihi Kasım 7, 2021.
  • Erdesi. Erde G-Force. http://erdesi.com.tr/wp-content/uploads/2017/11/erde-g-force-TDS.pdf. Erişim tarihi Kasım 7, 2021.

Effect of atmospheric pressure plasma treatment on the adhesive bonds of metal surfaces

Year 2023, Volume: 38 Issue: 2, 665 - 678, 07.10.2022
https://doi.org/10.17341/gazimmfd.1025228

Abstract

Atmospheric pressure plasma (APP) applications have started to come to the fore in many areas today because of their fast and easy-stable applicability to material surfaces and because they have many advantages compared to plasma applications made under vacuum. With APP, it is possible to improve the surface energies, adhesion behavior and surface mechanical properties of materials. In this context, there is a need to reveal the process parameters by making more detailed studies in the bonding process of metal materials. In this study, the effects of APP application on the adhesion strength of galvanized steels (H300LAD) and stainless steels (H300LA) were investigated. Two different materials (H300LAD and H300LA), two different adhesives (Marocol 18576 and Erde G-Force) and three different plasma application velocities (5 mm/s, 10 mm/s and 15 mm/s) were determined as experimental parameters. The results show that APP application provides improvements in metal bonding process.

References

  • Küçük D., Ercan U.K., Köseoğlu S., The fourth state of matter: Plasma and applications of atmospheric pressure cold plasmas ın dentistry, Yeditepe Dental Journal, 14 (3), 125-136, 2018.
  • Park S.J., Kim B.J., Influence of oxygen plasma treatment on hydrogen chloride removal of activated carbon fibers, J. Colloid Interface Sci., 275 (2), 590-595, 2004.
  • Kim J.S., Kim Y.E., Lee K.H., Effects of atmospheric plasma treatment on the interfacial characteristics of ethylene–vinyl acetate/polyurethane composites, J. Colloid Interface Sci., 271 (1), 187-191, 2004.
  • Lynch J.B., Spence P.D., Baker D.E., Postlethwaite T.A., Atmospheric pressure plasma treatment of polyethylene via a pulse dielectric barrier discharge: Comparison using various gas compositions versus corona discharge in air, J. Appl. Polym. Sci., 71 (2), 319-331, 1999.
  • Shenton M.J., Stevens G.C., Wright N.P., Duan X. J., Chemical-surface modification of polymers using atmospheric pressure nonequilibrium plasmas and comparisons with vacuum plasmas, J. Polym. Sci., Part A: Polym. Chem., 40 (1), 95-109, 2002.
  • Dallı E., Atmosferik Basınç Soğuk Plazma Jetler, Master Tezi, Eskişehir Osmangazi Üniversitesi, Fen Bilimleri Enstitüsü, Eskişehir, 2013.
  • Øiseth S.K., Krozer A., Kasemo B., Lausmaa J., Surface modification of spin-coated high-density polyethylene films by argon and oxygen glow discharge plasma treatments, Appl. Surf. Sci., 202 (1-2), 92-103, 2002.
  • Boudou J.P., Paredes J.I., Cuesta A., Martinez-Alonso A., Tascon J.M.D., Oxygen plasma modification of pitch-based isotropic carbon fibres, Carbon, 41 (1), 41-56, 2003.
  • Tang S., Lu N., Myung S.W., Choi H.S., Enhancement of adhesion strength between two AISI 316 L stainless steel plates through atmospheric pressure plasma treatment, Surf. Coat. Technol., 200 (18), 5220-5228, 2006.
  • Tang S., Kwon O.J., Lu N., Choi H.S., Surface characteristics of AISI 304L stainless steel after an atmospheric pressure plasma treatment, Surf. Coat. Technol., 195 (2), 298-306, 2005.
  • Polini W., Sorrentino L., Improving the wettability of 2024 aluminium alloy by means of cold plasma treatment, Appl. Surf. Sci., 214 (1), 232-242, 2003.
  • Polini W., Sorrentino L., Analysis of adhesion in an aggressive environment of a protective paint coating on an aluminium alloy surface treated by air cold plasma, J. Adhes. Sci. Technol., 18 (14), 1643-1661, 2004.
  • Sorrentino L., Carrino L., 2024 aluminium alloy wettability and superficial cleaning improvement by air cold plasma treatment, J. Mater. Process. Technol., 209 (3), 1400-1409, 2009.
  • Sorrentino L., Carrino L., Influence of process parameters of oxygen cold plasma treatment on wettability ageing time of 2024 aluminium alloy, Int. J. Adhes. Adhes., 29 (2), 136-143, 2009.
  • Prysiazhnyi V., Svoboda T., Dvorak M., Klima M., Aluminum surface treatment by the RF plasma pencil, Surf. Coat. Technol., 206 (19-20), 4140-4145, 2012.
  • Prysiazhnyi V., Zaporojchenko V., Kersten H., Cernak M., Influence of humidity on atmospheric pressure air plasma treatment of aluminium surfaces, Appl. Surf. Sci., 258 (14), 5467-5471, 2012.
  • Williams D.F., Kellar E.J.C., Jesson D.A., Watts J.F., Surface analysis of 316 stainless steel treated with cold atmospheric plasma, Appl. Surf. Sci., 403, 240-247, 2017.
  • Latifi A., Imani M., Khorasani M.T., Joupari M.D., Plasma surface oxidation of 316L stainless steel for improving adhesion strength of silicone rubber coating to metal substrate, Appl. Surf. Sci., 320, 471-481, 2014.
  • Kim M.C., Song D.K., Shin H.S., Baeg S.H., Kim G.S., Boo J.H., Han J.G., Yang S.H., Surface modification for hydrophilic property of stainless steel treated by atmospheric-pressure plasma jet, Surf. Coat. Technol., 171 (1), 312-316, 2003.
  • Preedy E.C., Brousseau E., Evans S.L., Perni S., Prokopovich P., Adhesive forces and surface properties of cold gas plasma treated UHMWPE, Colloids Surf., A, 460, 83-89, 2014.
  • Lin J.W., Chang H.C., Surface modification of SUS304 stainless steel by atmospheric pressure Ar/N2/O2 plasma, Nucl. Instrum. Methods Phys. Res., Sect. B, 269 (15), 1801-1808, 2011.
  • Mui T.S.M., Silva L.L.G., Prysiazhnyi V., Kostov K.G., Surface modification of aluminium alloys by atmospheric pressure plasma treatments for enhancement of their adhesion properties, Surf. Coat. Technol., 312, 32-36, 2017.
  • Acero M.A.C., Lopez L.C., Effect of plasma treatment in Aluminum and composites bonding joints: Shear load tests results, Procedia Manuf., 13, 183-189, 2017.
  • Maroofi A., Safa N.N., Ghomi H., Atmospheric air plasma jet for improvement of paint adhesion to aluminium surface in industrial applications, Int. J. Adhes. Adhes., 98 (9-10), 102554, 2020.
  • Ku J.H., Jung I.H., Rhee K.Y., Park S.J., Atmospheric pressure plasma treatment of polypropylene to improve the bonding strength of polypropylene/aluminum composites, Composites, Part B, 45 (1), 1282-1287, 2013.
  • Brzhozovskii B., Brovkova M., Gots I., Zinina H., Martynov V., Study of the low-temperature plasma treatment effect on the structure, physical and chemical surface characteristics of 40X13 steel, Heliyon, 5 (9), e02388, 2019.
  • Rodriguez-Villanueva C., Encinas N., Abenojar J., Martinez M.A., Assessment of atmospheric plasma treatment cleaning effect on steel surfaces, Surf. Coat. Technol., 236, 450-456, 2013.
  • Luna P., Marino A., Lizarazo-Marriaga J., Beltran O., Dry etching plasma applied to fique fibers: influence on their mechanical properties and surface appearance, Procedia Eng., 200, 141-147, 2017.
  • Kurtuldu F., Altuncu E., Surface Wettability Properties of 304 Stainless Steel Treated by Atmospheric-Pressure Plasma System, 4th International Symposium on Innovative Technologies in Engineering and Science, Antalya-Türkiye, 1350-1358, 3-5 Kasım, 2016.
  • Seyrek Y., Soğuk plazma tekniklerinin lifli kompozit performansına etkilerinin araştırılması, Master Tezi, Dokuz Eylül Üniversitesi, Fen Bilimleri Enstitüsü, İzmir, 2016.
  • Esen S.G., Otomobil tampon boya hatlarında plazma yüzey aktivasyonu ile yüzey enerjisinin kontrolü ve uygulanabilirliğinin araştırılması, Master Tezi, Sakarya Üniversitesi, Fen Bilimleri Enstitüsü, Sakarya, 2016.
  • Mandolfino C., Lertora E., Gambaro C., Effect of cold plasma treatment on surface roughness and bonding strength of polymeric substrates, Key Eng. Mater., 611-612, 1484-1493, 2014.
  • Mandolfino C., Lertora E., Genna S., Leone C., Gambaro C., Effect of laser and plasma surface cleaning on mechanical properties of adhesive bonded joints, Procedia CIRP, 33, 458-463, 2015.
  • Moroni F., Musiari F., Sciancalepore C., Messori M., Influence of atmospheric pressure plasma process parameters on the mechanical behavior of thermoplastic joints, Int. J. Adhes. Adhes., 102, 102650, 2020.
  • Lee C.J., Lee S.K., Ko D.C., Kim D.J., Kim B.M., Evaluation of surface and bonding properties of cold rolled steel sheet pretreated by Ar/O2 atmospheric pressure plasma at room temperature, J. Mater. Process. Technol., 209 (10), 4769-4775, 2009.
  • Saleema N., Gallant D., Atmospheric pressure plasma oxidation of AA6061-T6 aluminum alloy surface for strong and durable adhesive bonding applications, Appl. Surf. Sci., 282, 98-104, 2013.
  • Relyon Plasma. Piezobrush PZ2. http://www.relyon-plasma.com/relyon-plasma-produkte/piezobrush-pz2/?lang=en. Erişim tarihi Kasım 7, 2021.
  • Aydar A.Y., Rodriguez-Martinez V., Farkas B.E., Determination and modeling of contact angle of canola oil and olive oil on a PTFE surface at elevated temperatures using air or steam as surrounding media, LWT Food Sci. Technol., 65 (5), 304-310, 2016.
  • Adamson A.W., The Physical Chemistry of Surfaces, 5th Edition, Wiley Interscience, New York, A.B.D., 1990.
  • Mirsasaani S.S., Manjili H.M., Baheiraei N., Dental Nanocomposites, Advances in Diverse Industrial Applications of Nanocomposites, Boreddy Reddy, Chapter 19, 2011.
  • Bostik. Marocol 18576. http://www.bostik.com/uk/en/catalog/product/construction/emea/uk/product-marocol-18576/. Erişim tarihi Kasım 7, 2021.
  • Erdesi. Erde G-Force. http://erdesi.com.tr/wp-content/uploads/2017/11/erde-g-force-TDS.pdf. Erişim tarihi Kasım 7, 2021.
There are 42 citations in total.

Details

Primary Language Turkish
Subjects Engineering
Journal Section Makaleler
Authors

Öyküm Kanbir 0000-0002-1492-4736

Emel Taşyakan 0000-0002-3548-8742

Kadir Çavdar 0000-0001-9126-0315

Publication Date October 7, 2022
Submission Date November 18, 2021
Acceptance Date March 13, 2022
Published in Issue Year 2023 Volume: 38 Issue: 2

Cite

APA Kanbir, Ö., Taşyakan, E., & Çavdar, K. (2022). Metal malzeme yüzeylerinin yapıştırma işlemlerinde atmosferik basınçlı plazma uygulamasının etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, 38(2), 665-678. https://doi.org/10.17341/gazimmfd.1025228
AMA Kanbir Ö, Taşyakan E, Çavdar K. Metal malzeme yüzeylerinin yapıştırma işlemlerinde atmosferik basınçlı plazma uygulamasının etkisi. GUMMFD. October 2022;38(2):665-678. doi:10.17341/gazimmfd.1025228
Chicago Kanbir, Öyküm, Emel Taşyakan, and Kadir Çavdar. “Metal Malzeme yüzeylerinin yapıştırma işlemlerinde Atmosferik basınçlı Plazma uygulamasının Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38, no. 2 (October 2022): 665-78. https://doi.org/10.17341/gazimmfd.1025228.
EndNote Kanbir Ö, Taşyakan E, Çavdar K (October 1, 2022) Metal malzeme yüzeylerinin yapıştırma işlemlerinde atmosferik basınçlı plazma uygulamasının etkisi. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38 2 665–678.
IEEE Ö. Kanbir, E. Taşyakan, and K. Çavdar, “Metal malzeme yüzeylerinin yapıştırma işlemlerinde atmosferik basınçlı plazma uygulamasının etkisi”, GUMMFD, vol. 38, no. 2, pp. 665–678, 2022, doi: 10.17341/gazimmfd.1025228.
ISNAD Kanbir, Öyküm et al. “Metal Malzeme yüzeylerinin yapıştırma işlemlerinde Atmosferik basınçlı Plazma uygulamasının Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi 38/2 (October 2022), 665-678. https://doi.org/10.17341/gazimmfd.1025228.
JAMA Kanbir Ö, Taşyakan E, Çavdar K. Metal malzeme yüzeylerinin yapıştırma işlemlerinde atmosferik basınçlı plazma uygulamasının etkisi. GUMMFD. 2022;38:665–678.
MLA Kanbir, Öyküm et al. “Metal Malzeme yüzeylerinin yapıştırma işlemlerinde Atmosferik basınçlı Plazma uygulamasının Etkisi”. Gazi Üniversitesi Mühendislik Mimarlık Fakültesi Dergisi, vol. 38, no. 2, 2022, pp. 665-78, doi:10.17341/gazimmfd.1025228.
Vancouver Kanbir Ö, Taşyakan E, Çavdar K. Metal malzeme yüzeylerinin yapıştırma işlemlerinde atmosferik basınçlı plazma uygulamasının etkisi. GUMMFD. 2022;38(2):665-78.