Research Article
BibTex RIS Cite

The influence of the raster angle on the dimensional accuracy of FDM-printed PLA, PETG, and ABS tensile specimens

Year 2024, Volume: 8 Issue: 1, 11 - 18, 20.03.2024
https://doi.org/10.26701/ems.1392387

Abstract

3D printing is a rapidly advancing method in digital manufacturing techniques and produces objects in layers. Fused Deposition Modelling (FDM) is a 3D printing technology where the material is melted in a hot nozzle and then placed on a build platform to create a prototype layer by layer. In this study, the effects of different raster angles (0°, 45°, 90°, 45°/-45°, 0°/90°) on dimensional accuracy for PLA, PETG and ABS materials produced using FDM were investigated. The results show that PETG generally shows higher dimensional deviations compared to PLA and ABS, and samples with a scan angle of 90° generally have lower deviation percentages than other angles. Width deviations (approximately 1.5% on average) were lower than thickness deviations (approximately 9.5% on average). Analysis of the cross-sectional areas shows that all samples are above the theoretical area (41.6 mm2). PETG samples with a scan angle of 45°/-45° exhibit the largest cross-sectional area (46.78 mm2), while ABS samples with a scan angle of 90° exhibit the smallest (45.46 mm2). This study is important to understand the impact of material selection and raster angle on dimensional accuracy, and it is recommended to account for cross-sectional deviations and calculate the stress based on the actual cross-sectional area to achieve more accurate results in applications requiring precise measurements. These data offer valuable information for those interested in 3D printing and its professionals and can lead to further research in this field, so that printing techniques can be further developed and product quality can be improved.

References

  • [1] Gebisa, A.W., Lemu, H.G., (2019). Influence of 3D printing FDM process parameters on tensile property of ultem 9085. Procedia Manufacturing. 30: 331–8. doi: 10.1016/j.promfg.2019.02.047.
  • [2] Dawoud, M., Taha, I., Ebeid, S.J., (2016). Mechanical behaviour of ABS: An experimental study using FDM and injection moulding techniques. Journal of Manufacturing Processes. 21: 39–45. doi: 10.1016/j.jmapro.2015.11.002.
  • [3] Prakash, K.S., Nancharaih, T., Rao, V.V.S., (2018). Additive Manufacturing Techniques in Manufacturing -An Overview. Materials Today: Proceedings. 5(2): 3873–82. doi: 10.1016/j.matpr.2017.11.642.
  • [4] Kartal, F., Kaptan, A., (2023). Effects of annealing temperature and duration on mechanical properties of PLA plastics produced by 3D Printing 7: 152–9.
  • [5] Doǧan, O., Kamer, M.S., (2023). Experimental investigation of the creep behavior of test specimens manufactured with fused filament fabrication using different manufacturing parameters. Journal of the Faculty of Engineering and Architecture of Gazi University. 38(3): 1839–48. doi: 10.17341/gazimmfd.1122973.
  • [6] Rajpurohit, S.R., Dave, H.K., (2018). Effect of process parameters on tensile strength of FDM printed PLA part. Rapid Prototyping Journal. 24(8): 1317–24. doi: 10.1108/RPJ-06-2017-0134.
  • [7] Sheth, S., Taylor, R.M., Adluru, H., (2020). Numerical investigation of stiffness properties of FDM parts as a function of raster orientation. Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2017.: 1112–20.
  • [8] Solomon, I.J., Sevvel, P., Gunasekaran, J., (2020). A review on the various processing parameters in FDM. Materials Today: Proceedings. 37(Part 2): 509–14. doi: 10.1016/j.matpr.2020.05.484.
  • [9] Dogan, O., (2022). Short-term Creep Behaviour of Different Polymers Used in Additive Manufacturing under Different Thermal and Loading Conditions. Strojniski Vestnik/Journal of Mechanical Engineering. 68(7–8): 451–60. doi: 10.5545/sv-jme.2022.191.
  • [10] Frunzaverde, D., Cojocaru, V., Bacescu, N., Ciubotariu, C.R., Miclosina, C.O., Turiac, R.R., et al., (2023). The Influence of the Layer Height and the Filament Color on the Dimensional Accuracy and the Tensile Strength of FDM-Printed PLA Specimens. Polymers. 15(10). doi: 10.3390/polym15102377.
  • [11] Bolat, Ç., Eergene, B., (2022). An Investigation on Dimensional Accuracy of 3D Printed PLA, PET-G and ABS Samples with Different Layer Heights. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi. 37(2): 449–58. doi: 10.21605/cukurovaumfd.1146401.
  • [12] Tezel, T., Bölümü, M.M., Fakültesi, M., Üniversitesi, A., Antalya, T., n.d. International Journal of Multidisciplinary Studies and Innovative Technologies FDM ile Üretilen PET-G Malzemenin Üretim Sıcaklığı ve Hızının Boyutsal Doğruluğa Etkisi: 3–6.
  • [13] Stojković, J.R., Turudija, R., Vitković, N., Sanfilippo, F., Păcurar, A., Pleşa, A., et al., (2023). An Experimental Study on the Impact of Layer Height and Annealing Parameters on the Tensile Strength and Dimensional Accuracy of FDM 3D Printed Parts. Materials. 16(13): 4574. doi: 10.3390/ma16134574.
  • [14] Akbaş, O.E., Hıra, O., Hervan, S.Z., Samankan, S., Altınkaynak, A., (2020). Dimensional accuracy of FDM-printed polymer parts. Rapid Prototyping Journal. 26(2): 288–98. doi: 10.1108/RPJ-04-2019-0115.
  • [15] Mohanty, A., Nag, K.S., Bagal, D.K., Barua, A., Jeet, S., Mahapatra, S.S., et al., (2021). Parametric optimization of parameters affecting dimension precision of FDM printed part using hybrid Taguchi-MARCOS-nature inspired heuristic optimization technique. Materials Today: Proceedings. 50: 893–903. doi: 10.1016/j.matpr.2021.06.216.
  • [16] Çakan, B.G., (2021). Effects of raster angle on tensile and surface roughness properties of various FDM filaments 35(8): 1–7. doi: 10.1007/s12206-021-0708-8.
  • [17] Tanoto, Y.Y., Anggono, J., Siahaan, I.H., Budiman, W., (2017). The effect of orientation difference in fused deposition modeling of ABS polymer on the processing time, dimension accuracy, and strength. AIP Conference Proceedings. 1788(September 2015). doi: 10.1063/1.4968304.
  • [18] Kumar, R., Sharma, H., Saran, C., Tripathy, T.S., Sangwan, K.S., Herrmann, C., (2022). A Comparative Study on the Life Cycle Assessment of a 3D Printed Product with PLA, ABS & PETG Materials. Procedia CIRP. 107(March): 15–20. doi: 10.1016/j.procir.2022.04.003.
  • [19] Bachhav, C.Y., Sonawwanay, P.D., Naik, M., Thakur, D.G., (2023). Experimental and FEA analysis of flexural properties of 3D printed parts. Materials Today: Proceedings. doi: 10.1016/j.matpr.2023.02.262.
  • [20] Eryıldız, M., (2021). Effect of Build Orientation on Mechanical Behaviour and Build Time of FDM 3D-Printed PLA Parts: An Experimental Investigation. European Mechanical Science. 5(3): 116–20. doi: 10.26701/ems.881254.
Year 2024, Volume: 8 Issue: 1, 11 - 18, 20.03.2024
https://doi.org/10.26701/ems.1392387

Abstract

References

  • [1] Gebisa, A.W., Lemu, H.G., (2019). Influence of 3D printing FDM process parameters on tensile property of ultem 9085. Procedia Manufacturing. 30: 331–8. doi: 10.1016/j.promfg.2019.02.047.
  • [2] Dawoud, M., Taha, I., Ebeid, S.J., (2016). Mechanical behaviour of ABS: An experimental study using FDM and injection moulding techniques. Journal of Manufacturing Processes. 21: 39–45. doi: 10.1016/j.jmapro.2015.11.002.
  • [3] Prakash, K.S., Nancharaih, T., Rao, V.V.S., (2018). Additive Manufacturing Techniques in Manufacturing -An Overview. Materials Today: Proceedings. 5(2): 3873–82. doi: 10.1016/j.matpr.2017.11.642.
  • [4] Kartal, F., Kaptan, A., (2023). Effects of annealing temperature and duration on mechanical properties of PLA plastics produced by 3D Printing 7: 152–9.
  • [5] Doǧan, O., Kamer, M.S., (2023). Experimental investigation of the creep behavior of test specimens manufactured with fused filament fabrication using different manufacturing parameters. Journal of the Faculty of Engineering and Architecture of Gazi University. 38(3): 1839–48. doi: 10.17341/gazimmfd.1122973.
  • [6] Rajpurohit, S.R., Dave, H.K., (2018). Effect of process parameters on tensile strength of FDM printed PLA part. Rapid Prototyping Journal. 24(8): 1317–24. doi: 10.1108/RPJ-06-2017-0134.
  • [7] Sheth, S., Taylor, R.M., Adluru, H., (2020). Numerical investigation of stiffness properties of FDM parts as a function of raster orientation. Solid Freeform Fabrication 2017: Proceedings of the 28th Annual International Solid Freeform Fabrication Symposium - An Additive Manufacturing Conference, SFF 2017.: 1112–20.
  • [8] Solomon, I.J., Sevvel, P., Gunasekaran, J., (2020). A review on the various processing parameters in FDM. Materials Today: Proceedings. 37(Part 2): 509–14. doi: 10.1016/j.matpr.2020.05.484.
  • [9] Dogan, O., (2022). Short-term Creep Behaviour of Different Polymers Used in Additive Manufacturing under Different Thermal and Loading Conditions. Strojniski Vestnik/Journal of Mechanical Engineering. 68(7–8): 451–60. doi: 10.5545/sv-jme.2022.191.
  • [10] Frunzaverde, D., Cojocaru, V., Bacescu, N., Ciubotariu, C.R., Miclosina, C.O., Turiac, R.R., et al., (2023). The Influence of the Layer Height and the Filament Color on the Dimensional Accuracy and the Tensile Strength of FDM-Printed PLA Specimens. Polymers. 15(10). doi: 10.3390/polym15102377.
  • [11] Bolat, Ç., Eergene, B., (2022). An Investigation on Dimensional Accuracy of 3D Printed PLA, PET-G and ABS Samples with Different Layer Heights. Çukurova Üniversitesi Mühendislik Fakültesi Dergisi. 37(2): 449–58. doi: 10.21605/cukurovaumfd.1146401.
  • [12] Tezel, T., Bölümü, M.M., Fakültesi, M., Üniversitesi, A., Antalya, T., n.d. International Journal of Multidisciplinary Studies and Innovative Technologies FDM ile Üretilen PET-G Malzemenin Üretim Sıcaklığı ve Hızının Boyutsal Doğruluğa Etkisi: 3–6.
  • [13] Stojković, J.R., Turudija, R., Vitković, N., Sanfilippo, F., Păcurar, A., Pleşa, A., et al., (2023). An Experimental Study on the Impact of Layer Height and Annealing Parameters on the Tensile Strength and Dimensional Accuracy of FDM 3D Printed Parts. Materials. 16(13): 4574. doi: 10.3390/ma16134574.
  • [14] Akbaş, O.E., Hıra, O., Hervan, S.Z., Samankan, S., Altınkaynak, A., (2020). Dimensional accuracy of FDM-printed polymer parts. Rapid Prototyping Journal. 26(2): 288–98. doi: 10.1108/RPJ-04-2019-0115.
  • [15] Mohanty, A., Nag, K.S., Bagal, D.K., Barua, A., Jeet, S., Mahapatra, S.S., et al., (2021). Parametric optimization of parameters affecting dimension precision of FDM printed part using hybrid Taguchi-MARCOS-nature inspired heuristic optimization technique. Materials Today: Proceedings. 50: 893–903. doi: 10.1016/j.matpr.2021.06.216.
  • [16] Çakan, B.G., (2021). Effects of raster angle on tensile and surface roughness properties of various FDM filaments 35(8): 1–7. doi: 10.1007/s12206-021-0708-8.
  • [17] Tanoto, Y.Y., Anggono, J., Siahaan, I.H., Budiman, W., (2017). The effect of orientation difference in fused deposition modeling of ABS polymer on the processing time, dimension accuracy, and strength. AIP Conference Proceedings. 1788(September 2015). doi: 10.1063/1.4968304.
  • [18] Kumar, R., Sharma, H., Saran, C., Tripathy, T.S., Sangwan, K.S., Herrmann, C., (2022). A Comparative Study on the Life Cycle Assessment of a 3D Printed Product with PLA, ABS & PETG Materials. Procedia CIRP. 107(March): 15–20. doi: 10.1016/j.procir.2022.04.003.
  • [19] Bachhav, C.Y., Sonawwanay, P.D., Naik, M., Thakur, D.G., (2023). Experimental and FEA analysis of flexural properties of 3D printed parts. Materials Today: Proceedings. doi: 10.1016/j.matpr.2023.02.262.
  • [20] Eryıldız, M., (2021). Effect of Build Orientation on Mechanical Behaviour and Build Time of FDM 3D-Printed PLA Parts: An Experimental Investigation. European Mechanical Science. 5(3): 116–20. doi: 10.26701/ems.881254.
There are 20 citations in total.

Details

Primary Language English
Subjects Material Design and Behaviors
Journal Section Research Article
Authors

Oğuz Tunçel 0000-0002-6886-6367

Early Pub Date January 22, 2024
Publication Date March 20, 2024
Submission Date November 17, 2023
Acceptance Date December 18, 2023
Published in Issue Year 2024 Volume: 8 Issue: 1

Cite

APA Tunçel, O. (2024). The influence of the raster angle on the dimensional accuracy of FDM-printed PLA, PETG, and ABS tensile specimens. European Mechanical Science, 8(1), 11-18. https://doi.org/10.26701/ems.1392387
AMA Tunçel O. The influence of the raster angle on the dimensional accuracy of FDM-printed PLA, PETG, and ABS tensile specimens. EMS. March 2024;8(1):11-18. doi:10.26701/ems.1392387
Chicago Tunçel, Oğuz. “The Influence of the Raster Angle on the Dimensional Accuracy of FDM-Printed PLA, PETG, and ABS Tensile Specimens”. European Mechanical Science 8, no. 1 (March 2024): 11-18. https://doi.org/10.26701/ems.1392387.
EndNote Tunçel O (March 1, 2024) The influence of the raster angle on the dimensional accuracy of FDM-printed PLA, PETG, and ABS tensile specimens. European Mechanical Science 8 1 11–18.
IEEE O. Tunçel, “The influence of the raster angle on the dimensional accuracy of FDM-printed PLA, PETG, and ABS tensile specimens”, EMS, vol. 8, no. 1, pp. 11–18, 2024, doi: 10.26701/ems.1392387.
ISNAD Tunçel, Oğuz. “The Influence of the Raster Angle on the Dimensional Accuracy of FDM-Printed PLA, PETG, and ABS Tensile Specimens”. European Mechanical Science 8/1 (March 2024), 11-18. https://doi.org/10.26701/ems.1392387.
JAMA Tunçel O. The influence of the raster angle on the dimensional accuracy of FDM-printed PLA, PETG, and ABS tensile specimens. EMS. 2024;8:11–18.
MLA Tunçel, Oğuz. “The Influence of the Raster Angle on the Dimensional Accuracy of FDM-Printed PLA, PETG, and ABS Tensile Specimens”. European Mechanical Science, vol. 8, no. 1, 2024, pp. 11-18, doi:10.26701/ems.1392387.
Vancouver Tunçel O. The influence of the raster angle on the dimensional accuracy of FDM-printed PLA, PETG, and ABS tensile specimens. EMS. 2024;8(1):11-8.

Dergi TR Dizin'de Taranmaktadır.

Flag Counter