Research Article
BibTex RIS Cite

Preparation of a Clay Composite Containing Poly(o-toluidine) and Halloysite, and Examining of Its Performance as a Humidity Sensor

Year 2021, Volume: 9 Issue: 2, 521 - 534, 25.04.2021
https://doi.org/10.29130/dubited.836431

Abstract

This study outlines the production of an electrically conductive clay-based composite containing the halloysite as clay mineral and poly(o-toluidine) (POT) as a conductive filler. In the study, conductive POT/halloysite composite was obtained by in situ oxidative polymerization of o-toluidine using ammonium persulphate (APS) as an oxidant between the halloysite layers. By changing the polymerization conditions such as polymerization time, o-toluidine concentration, APS, and the concentration of HCl solution used as the reaction medium, the composite with the highest conductivity (7.5×10-5 S.cm-1) was obtained. Structural and morphological changes and thermal behaviors that occurred after the composite formation was revealed using various characterization techniques such as FTIR, XRD, TGA, and SEM. The usability of the prepared POT/halloysite composite as humidity sensing material was tested in comparison with the pure POT component of the composite at a relative humidity (% RH) varied between 41-94 (%). Accordingly, it was found that the composite exhibited a fairly regular resistance change to varying relative humidity compared to pure POT polymer.

Supporting Institution

Ankara Üniversitesi Bilimsel Araştırma Projeleri

Project Number

12B4240005

Thanks

The authors would like to thank the Ankara University Research Fund for financial support of this study.

References

  • [1] L. F. B. L. Pontes, J. E. G. de Souza, A. Galembeck, and C. P. de Melo, “Gas sensor based on montmorillonite/polypyrrole composites prepared by in situ polymerization in aqueous medium,” Sensors and Actuators B: Chemical, vol. 177, pp. 1115-1121, 2013.
  • [2] N. G. Duran, M. Karakışla, L. Aksu, and M. Saçak, “Conducting polyaniline/kaolinite composite: Synthesis, characterization and temperature sensing properties,” Materials Chemistry and Physics, vol. 118, no. 1, pp. 93-98, 2009, doi: https://doi.org/10.1016/j.matchemphys.2009.07.009.
  • [3] F. Boran, S. Çetinkaya, M. Karakışla, and M. Saçak, “Synthesis and characterization of poly(o-toluidine)/kaolinite conductive composites for humidity and temperature sensing,” Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 24, no. 7, pp.1283-1278, 2018.
  • [4] A. Verma and U. Riaz, “Sonolytically intercalated poly(anisidine-co-toluidine)/bentonite nanocomposites: pH responsive drug release characteristics,” Journal of Drug Delivery Science and Technology, vol. 48, pp.49-58, 2018, doi: https://doi.org/10.1016/j.jddst.2018.08.024.
  • [5] H. Zheng, M. Liu, Z. Yan, and J. Chen, “Highly selective and stable glucose biosensor based on incorporation of platinum nanoparticles into polyaniline-montmorillonite hybrid composites,” Microchemical Journal, vol. 152, pp. 104266, 2020, doi: https://doi.org/10.1016/j.microc.2019.104266.
  • [6] P. Karthikeyan, S. Sathishkumar, K. Pandian, L. Mitu, and R. Rajavel, “Novel copper doped Halloysite Nano Tube/silver-poly(pyrrole-co-3,4-ethylenedioxythiophene) dual layer coatings on low nickel stainless steel for anti-corrosion applications,” Journal of Science: Advanced Materials and Devices, vol. 3, no. 1, pp.59-67, 2018, doi: https://doi.org/10.1016/j.jsamd.2017.12.003.
  • [7] F. J. Anaissi, G. J. F. Demets, R. A. Timm, and H. E. Toma, “Hybrid polyaniline/bentonite–vanadium(V) oxide nanocomposites,” Materials Science and Engineering: A, vol. 347, no. 1, pp.374-381, 2003, doi: https://doi.org/10.1016/S0921-5093(02)00618-4.
  • [8] M. Špírková, P. Bober, J. Kotek, and J. Stejskal, “Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix,” Chemical Papers, vol. 67, no. 8, pp.1020-1027, 2013, doi: 10.2478/s11696-012-0299-z.
  • [9] H. Huang, J. Yao, H. Chen, X. Zeng, C. Chen, X. She, and L. Li, “Facile preparation of halloysite/polyaniline nanocomposites via in situ polymerization and layer-by-layer assembly with good supercapacitor performance,” Journal of materials science, vol. 51, no. 8, pp.4047-4054, 2016.
  • [10] P. W. Faguy, W. Ma, J. A. Lowe, W.-P. Pan, and T. Brown, “Conducting polymer–clay composites for electrochemical applications,” Journal of Materials Chemistry, vol. 4, no. 5, pp.771-772, 1994, doi: 10.1039/JM9940400771.
  • [11] Q. Sheng, D. Zhang, Q. Wu, J. Zheng, and H. Tang, “Electrodeposition of Prussian blue nanoparticles on polyaniline coated halloysite nanotubes for nonenzymatic hydrogen peroxide sensing,” Analytical Methods, vol. 7, no. 16, pp.6896-6903, 2015, doi: 10.1039/C5AY01329A.
  • [12] L. Zhang, T. Wang, and P. Liu, “Polyaniline-coated halloysite nanotubes via in-situ chemical polymerization,” Applied Surface Science, vol. 255, no. 5, pp. 2091-2097, 2008.
  • [13] X. Sun, Y. Long, P. Wang, J. Sun, and J. Ma, “Preparation of conducting halloysite/polyaniline coaxial tubular nanocomposites in the presence of decorating halloysite as in situ dopant,” Reactive and Functional Polymers, vol. 72, no. 5, pp.323-328, 2012, doi: https://doi.org/10.1016/j.reactfunctpolym.2012.03.002.
  • [14] H. Acar, M. Karakışla, and M. Saçak, “Preparation and characterization of conductive polypyrrole/kaolinite composites,” Materials Science in Semiconductor Processing, vol. 16, no. 3, pp.845-850, 2013, doi: https://doi.org/10.1016/j.mssp.2013.01.009.
  • [15] M. Günay, M. K. Erdoğan, M. Karakışla, and M. Saçak, “Hydrophobic modification of kaolinite by coating with the conductive polythiophene and investigation of the usability as the environmental-based sensors,” Chemical Papers, 2020, doi: 10.1007/s11696-020-01268-1.
  • [16] A. S. Al-Hussaini, “New crystalline poly(aniline-co-benzidine)/bentonite microcomposites: synthesis and characterization,” Polymer Bulletin, vol. 76, no. 1, pp.323-337, 2019, doi: 10.1007/s00289-018-2386-y.
  • [17] D. Anaklı and S. Çetinkaya, “Preparation of poly(2-ethyl aniline)/kaolinite composite materials and investigation of their properties,” Current Applied Physics, vol. 10, no. 2, pp.401-406, 2010, doi: https://doi.org/10.1016/j.cap.2009.06.037.
  • [18] E. Joussein, S. Petit, J. Churchman, B. Theng, D. Righi, and B. Delvaux, “Halloysite clay minerals - A review,” Clay Minerals, vol. 40, no. 4, pp.383-426, 2005, doi: 10.1180/0009855054040180.
  • [19] S. Deng, J. Zhang, L. Ye, and J. Wu, “Toughening epoxies with halloysite nanotubes,” Polymer, vol. 49, no. 23, pp.5119-5127, 2008, doi: https://doi.org/10.1016/j.polymer.2008.09.027.
  • [20] E. Tierrablanca, J. Romero-García, P. Roman, and R. Cruz-Silva, “Biomimetic polymerization of aniline using hematin supported on halloysite nanotubes,” Applied Catalysis A: General, vol. 381, no. 1-2, pp.267-273, 2010.
  • [21] T. Zhou, C. Li, H. Jin, Y. Lian, and W. Han, “Effective Adsorption/Reduction of Cr(VI) Oxyanion by Halloysite@Polyaniline Hybrid Nanotubes,” ACS Applied Materials & Interfaces, vol. 9, no. 7, pp.6030-6043, 2017, doi: 10.1021/acsami.6b14079.
  • [22] F. Hu, J. Xu, S. Zhang, J. Jiang, B. Yan, Y. Gu, M. Jiang, S. Lin, and S. Chen, “Core/shell structured halloysite/polyaniline nanotubes with enhanced electrochromic properties,” Journal of Materials Chemistry C, vol. 6, no. 21, pp.5707-5715, 2018.
  • [23] S. Zuo, W. Liu, C. Yao, X. Li, Y. Kong, X. Liu, H. Mao, and Y. Li, “Preparation of polyaniline–polypyrrole binary composite nanotube using halloysite as hard-template and its characterization,” Chemical engineering journal, vol. 228, pp.1092-1097, 2013.
  • [24] S. I. A. Razak, N. F. A. Sharif, and I. I. Muhamad, “Polyaniline-coated halloysite nanotubes: effect of para-hydroxybenzene sulfonic acid doping,” Composite Interfaces, vol. 21, no. 8, pp.715-722, 2014, doi: 10.1080/15685543.2014.932551.
  • [25] H. Parab, K. Chauhan, J. Ramkumar, R. D. P.S, N. S. Shenoy, and S. D. Kumar, “In-situ synthesised polyaniline - halloysite nanoclay composite sorbent for effective decontamination of nitrate from aqueous streams,” International Journal of Environmental Analytical Chemistry, pp.1-16, 2020, doi: 10.1080/03067319.2020.1828390.
  • [26] M. M. Abolghasemi, N. Arsalani, V. Yousefi, M. Arsalani, and M. Piryaei, “Fabrication of polyaniline-coated halloysite nanotubes by in situ chemical polymerization as a solid-phase microextraction coating for the analysis of volatile organic compounds in aqueous solutions,” Journal of Separation Science, vol. 39, no. 5, pp.956-963, 2016, doi: https://doi.org/10.1002/jssc.201500839.
  • [27] R. Surya Murali, M. Padaki, T. Matsuura, M. S. Abdullah, and A. F. Ismail, “Polyaniline in situ modified halloysite nanotubes incorporated asymmetric mixed matrix membrane for gas separation,” Separation and Purification Technology, vol. 132, pp.187-194, 2014, doi: https://doi.org/10.1016/j.seppur.2014.05.020.
  • [28] M. V. Kulkarni, A. K. Viswanath, and P. K. Khanna, “Synthesis and humidity sensing properties of conducting poly(N-methyl aniline) doped with different acids,” Sensors and Actuators B: Chemical, vol. 115, no. 1, pp.140-149, 2006, doi: https://doi.org/10.1016/j.snb.2005.08.031.
  • [29] C. Saravanan, S. Palaniappan, and F. Chandezon, “Synthesis of nanoporous conducting polyaniline using ternary surfactant,” Materials Letters, vol. 62, no. 6, pp.882-885, 2008, doi: https://doi.org/10.1016/j.matlet.2007.07.003.
  • [30] P. S. Rao, D. N. Sathyanarayana, and S. Palaniappan, “Polymerization of Aniline in an Organic Peroxide System by the Inverted Emulsion Process,” Macromolecules, vol. 35, no. 13, pp.4988-4996, 2002, doi: 10.1021/ma0114638.
  • [31] M. A. C. Mazzeu, L. K. Faria, M. R. Baldan, M. C. Rezende, and E. S. Gonçalves, “Influence of reaction time on the structure of polyaniline synthesized on a pre-pilot scale,” Brazilian Journal of Chemical Engineering, vol. 35, no. 1, pp.123-130, 2018.
  • [32] R. Gangopadhyay, A. De, and G. Ghosh, “Polyaniline–poly(vinyl alcohol) conducting composite: material with easy processability and novel application potential,” Synthetic Metals, vol. 123, no. 1, pp.21-31, 2001, doi: https://doi.org/10.1016/S0379-6779(00)00573-7.
  • [33] V. M. Abbasov, H. C. Ibrahimov, G. S. Mukhtarova, and E. Abdullayev, “Acid treated halloysite clay nanotubes as catalyst supports for fuel production by catalytic hydrocracking of heavy crude oil,” Fuel, vol. 184, pp.555-558, 2016, doi: https://doi.org/10.1016/j.fuel.2016.07.054.
  • [34] K. Belkassa, F. Bessaha, K. Marouf-Khelifa, I. Batonneau-Gener, J.-d. Comparot, and A. Khelifa, “Physicochemical and adsorptive properties of a heat-treated and acid-leached Algerian halloysite,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 421, pp. 26-33, 2013, doi: https://doi.org/10.1016/j.colsurfa.2012.12.048.
  • [35] A. G. MacDiarmid and A. J. Epstein, “Secondary doping in polyaniline,” Synthetic Metals, vol. 69, no. 1, pp.85-92, 1995, doi: https://doi.org/10.1016/0379-6779(94)02374-8.
  • [36] M. M. Ayad and M. A. Sheneshin, “Effect of acids on in situ polyaniline film formation,” Polymer International, vol. 53, no. 8, pp. 1180-1184, 2004, doi: 10.1002/pi.1532.
  • [37] S. S. Zargarian, V. Haddadi-Asl, and H. Hematpour, “Carboxylic acid functionalization of halloysite nanotubes for sustained release of diphenhydramine hydrochloride,” Journal of Nanoparticle Research, vol. 17, no. 5, pp. 218, 2015, doi: 10.1007/s11051-015-3032-3.
  • [38] P. Yuan, P. D. Southon, Z. Liu, M. E. Green, J. M. Hook, S. J. Antill, and C. J. Kepert, “Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane,” The Journal of Physical Chemistry C, vol. 112, no. 40, pp.15742-15751, 2008.
  • [39] Q. He, D. Yang, X. Deng, Q. Wu, R. Li, Y. Zhai, and L. Zhang, “Preparation, characterization and application of N-2-Pyridylsuccinamic acid-functionalized halloysite nanotubes for solid-phase extraction of Pb (II),” Water Research, vol. 47, no. 12, pp. 3976-3983, 2013.
  • [40] P. R. Chang, Y. Xie, D. Wu, and X. Ma, “Amylose wrapped halloysite nanotubes,” Carbohydrate Polymers, vol. 84, no. 4, pp.1426-1429, 2011, doi: https://doi.org/10.1016/j.carbpol.2011.01.038.
  • [41] M. Arora, V. Luthra, R. Singh, and S. K. Gupta, “Study of vibrational spectra of polyaniline doped with sulfuric acid and phosphoric acid,” Applied Biochemistry and Biotechnology, vol. 96, no. 1, pp. 173-181, 2001, doi: 10.1385/ABAB:96:1-3:173.
  • [42] M. Trchová and J. Stejskal, “Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical Report),” in Pure and Applied Chemistry, 2011. pp. 1803.
  • [43] E. T. Kang, K. G. Neoh, and K. L. Tan, “Polyaniline: A polymer with many interesting intrinsic redox states,” Progress in Polymer Science, vol. 23, no. 2, pp.277-324, 1998, doi: https://doi.org/10.1016/S0079-6700(97)00030-0.
  • [44] M. I. Boyer, S. Quillard, E. Rebourt, G. Louarn, J. P. Buisson, A. Monkman, and S. Lefrant, “Vibrational Analysis of Polyaniline:  A Model Compound Approach,” The Journal of Physical Chemistry B, vol. 102, no. 38, pp. 7382-7392, 1998, doi: 10.1021/jp972652o.

Poli (o-toluidin) ve Halloysit İçeren Bir Kil Kompozitinin Hazırlanması ve Nem Sensörü Olarak Performansının İncelenmesi

Year 2021, Volume: 9 Issue: 2, 521 - 534, 25.04.2021
https://doi.org/10.29130/dubited.836431

Abstract

Bu çalışma, kil minerali olarak halloysit ve iletken bir dolgu maddesi olarak poli (o-toluidin) (POT) içeren elektriksel olarak iletken kil bazlı bir kompozitin üretimini özetlemektedir. Çalışmada, iletken POT / halloysit kompoziti, o-toluidinin, halloysit tabakaları arasında oksidant olarak amonyum persülfat (APS) kullanılarak in-situ oksidatif polimerizasyon yöntemi ile elde edildi. Polimerizasyon süresi, o-toluidin derişimi, APS ve reaksiyon ortamı olarak kullanılan HCl çözeltisi derişimi gibi polimerizasyon koşulları değiştirilerek en yüksek iletkenliğe sahip kompozit (7.5×10-5 Scm-1) elde edildi. Kompozit oluşumundan sonra meydana gelen yapısal ve morfolojik değişiklikler ve termal davranışlar FTIR, XRD, TGA ve SEM gibi çeşitli karakterizasyon teknikleri kullanılarak ortaya konuldu. Hazırlanan POT / halloysit kompozitin nem algılama malzemesi olarak kullanılabilirliği, 41-94 arasında değişen bir bağıl nemde (% RH) kompozitin saf POT bileşeni ile karşılaştırılarak test edilmiştir. Buna göre kompozitin, saf POT polimere kıyasla değişen bağıl neme karşı oldukça düzenli bir direnç değişikliği sergilediği bulundu.

Project Number

12B4240005

References

  • [1] L. F. B. L. Pontes, J. E. G. de Souza, A. Galembeck, and C. P. de Melo, “Gas sensor based on montmorillonite/polypyrrole composites prepared by in situ polymerization in aqueous medium,” Sensors and Actuators B: Chemical, vol. 177, pp. 1115-1121, 2013.
  • [2] N. G. Duran, M. Karakışla, L. Aksu, and M. Saçak, “Conducting polyaniline/kaolinite composite: Synthesis, characterization and temperature sensing properties,” Materials Chemistry and Physics, vol. 118, no. 1, pp. 93-98, 2009, doi: https://doi.org/10.1016/j.matchemphys.2009.07.009.
  • [3] F. Boran, S. Çetinkaya, M. Karakışla, and M. Saçak, “Synthesis and characterization of poly(o-toluidine)/kaolinite conductive composites for humidity and temperature sensing,” Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, vol. 24, no. 7, pp.1283-1278, 2018.
  • [4] A. Verma and U. Riaz, “Sonolytically intercalated poly(anisidine-co-toluidine)/bentonite nanocomposites: pH responsive drug release characteristics,” Journal of Drug Delivery Science and Technology, vol. 48, pp.49-58, 2018, doi: https://doi.org/10.1016/j.jddst.2018.08.024.
  • [5] H. Zheng, M. Liu, Z. Yan, and J. Chen, “Highly selective and stable glucose biosensor based on incorporation of platinum nanoparticles into polyaniline-montmorillonite hybrid composites,” Microchemical Journal, vol. 152, pp. 104266, 2020, doi: https://doi.org/10.1016/j.microc.2019.104266.
  • [6] P. Karthikeyan, S. Sathishkumar, K. Pandian, L. Mitu, and R. Rajavel, “Novel copper doped Halloysite Nano Tube/silver-poly(pyrrole-co-3,4-ethylenedioxythiophene) dual layer coatings on low nickel stainless steel for anti-corrosion applications,” Journal of Science: Advanced Materials and Devices, vol. 3, no. 1, pp.59-67, 2018, doi: https://doi.org/10.1016/j.jsamd.2017.12.003.
  • [7] F. J. Anaissi, G. J. F. Demets, R. A. Timm, and H. E. Toma, “Hybrid polyaniline/bentonite–vanadium(V) oxide nanocomposites,” Materials Science and Engineering: A, vol. 347, no. 1, pp.374-381, 2003, doi: https://doi.org/10.1016/S0921-5093(02)00618-4.
  • [8] M. Špírková, P. Bober, J. Kotek, and J. Stejskal, “Bi-hybrid coatings: polyaniline-montmorillonite filler in organic-inorganic polymer matrix,” Chemical Papers, vol. 67, no. 8, pp.1020-1027, 2013, doi: 10.2478/s11696-012-0299-z.
  • [9] H. Huang, J. Yao, H. Chen, X. Zeng, C. Chen, X. She, and L. Li, “Facile preparation of halloysite/polyaniline nanocomposites via in situ polymerization and layer-by-layer assembly with good supercapacitor performance,” Journal of materials science, vol. 51, no. 8, pp.4047-4054, 2016.
  • [10] P. W. Faguy, W. Ma, J. A. Lowe, W.-P. Pan, and T. Brown, “Conducting polymer–clay composites for electrochemical applications,” Journal of Materials Chemistry, vol. 4, no. 5, pp.771-772, 1994, doi: 10.1039/JM9940400771.
  • [11] Q. Sheng, D. Zhang, Q. Wu, J. Zheng, and H. Tang, “Electrodeposition of Prussian blue nanoparticles on polyaniline coated halloysite nanotubes for nonenzymatic hydrogen peroxide sensing,” Analytical Methods, vol. 7, no. 16, pp.6896-6903, 2015, doi: 10.1039/C5AY01329A.
  • [12] L. Zhang, T. Wang, and P. Liu, “Polyaniline-coated halloysite nanotubes via in-situ chemical polymerization,” Applied Surface Science, vol. 255, no. 5, pp. 2091-2097, 2008.
  • [13] X. Sun, Y. Long, P. Wang, J. Sun, and J. Ma, “Preparation of conducting halloysite/polyaniline coaxial tubular nanocomposites in the presence of decorating halloysite as in situ dopant,” Reactive and Functional Polymers, vol. 72, no. 5, pp.323-328, 2012, doi: https://doi.org/10.1016/j.reactfunctpolym.2012.03.002.
  • [14] H. Acar, M. Karakışla, and M. Saçak, “Preparation and characterization of conductive polypyrrole/kaolinite composites,” Materials Science in Semiconductor Processing, vol. 16, no. 3, pp.845-850, 2013, doi: https://doi.org/10.1016/j.mssp.2013.01.009.
  • [15] M. Günay, M. K. Erdoğan, M. Karakışla, and M. Saçak, “Hydrophobic modification of kaolinite by coating with the conductive polythiophene and investigation of the usability as the environmental-based sensors,” Chemical Papers, 2020, doi: 10.1007/s11696-020-01268-1.
  • [16] A. S. Al-Hussaini, “New crystalline poly(aniline-co-benzidine)/bentonite microcomposites: synthesis and characterization,” Polymer Bulletin, vol. 76, no. 1, pp.323-337, 2019, doi: 10.1007/s00289-018-2386-y.
  • [17] D. Anaklı and S. Çetinkaya, “Preparation of poly(2-ethyl aniline)/kaolinite composite materials and investigation of their properties,” Current Applied Physics, vol. 10, no. 2, pp.401-406, 2010, doi: https://doi.org/10.1016/j.cap.2009.06.037.
  • [18] E. Joussein, S. Petit, J. Churchman, B. Theng, D. Righi, and B. Delvaux, “Halloysite clay minerals - A review,” Clay Minerals, vol. 40, no. 4, pp.383-426, 2005, doi: 10.1180/0009855054040180.
  • [19] S. Deng, J. Zhang, L. Ye, and J. Wu, “Toughening epoxies with halloysite nanotubes,” Polymer, vol. 49, no. 23, pp.5119-5127, 2008, doi: https://doi.org/10.1016/j.polymer.2008.09.027.
  • [20] E. Tierrablanca, J. Romero-García, P. Roman, and R. Cruz-Silva, “Biomimetic polymerization of aniline using hematin supported on halloysite nanotubes,” Applied Catalysis A: General, vol. 381, no. 1-2, pp.267-273, 2010.
  • [21] T. Zhou, C. Li, H. Jin, Y. Lian, and W. Han, “Effective Adsorption/Reduction of Cr(VI) Oxyanion by Halloysite@Polyaniline Hybrid Nanotubes,” ACS Applied Materials & Interfaces, vol. 9, no. 7, pp.6030-6043, 2017, doi: 10.1021/acsami.6b14079.
  • [22] F. Hu, J. Xu, S. Zhang, J. Jiang, B. Yan, Y. Gu, M. Jiang, S. Lin, and S. Chen, “Core/shell structured halloysite/polyaniline nanotubes with enhanced electrochromic properties,” Journal of Materials Chemistry C, vol. 6, no. 21, pp.5707-5715, 2018.
  • [23] S. Zuo, W. Liu, C. Yao, X. Li, Y. Kong, X. Liu, H. Mao, and Y. Li, “Preparation of polyaniline–polypyrrole binary composite nanotube using halloysite as hard-template and its characterization,” Chemical engineering journal, vol. 228, pp.1092-1097, 2013.
  • [24] S. I. A. Razak, N. F. A. Sharif, and I. I. Muhamad, “Polyaniline-coated halloysite nanotubes: effect of para-hydroxybenzene sulfonic acid doping,” Composite Interfaces, vol. 21, no. 8, pp.715-722, 2014, doi: 10.1080/15685543.2014.932551.
  • [25] H. Parab, K. Chauhan, J. Ramkumar, R. D. P.S, N. S. Shenoy, and S. D. Kumar, “In-situ synthesised polyaniline - halloysite nanoclay composite sorbent for effective decontamination of nitrate from aqueous streams,” International Journal of Environmental Analytical Chemistry, pp.1-16, 2020, doi: 10.1080/03067319.2020.1828390.
  • [26] M. M. Abolghasemi, N. Arsalani, V. Yousefi, M. Arsalani, and M. Piryaei, “Fabrication of polyaniline-coated halloysite nanotubes by in situ chemical polymerization as a solid-phase microextraction coating for the analysis of volatile organic compounds in aqueous solutions,” Journal of Separation Science, vol. 39, no. 5, pp.956-963, 2016, doi: https://doi.org/10.1002/jssc.201500839.
  • [27] R. Surya Murali, M. Padaki, T. Matsuura, M. S. Abdullah, and A. F. Ismail, “Polyaniline in situ modified halloysite nanotubes incorporated asymmetric mixed matrix membrane for gas separation,” Separation and Purification Technology, vol. 132, pp.187-194, 2014, doi: https://doi.org/10.1016/j.seppur.2014.05.020.
  • [28] M. V. Kulkarni, A. K. Viswanath, and P. K. Khanna, “Synthesis and humidity sensing properties of conducting poly(N-methyl aniline) doped with different acids,” Sensors and Actuators B: Chemical, vol. 115, no. 1, pp.140-149, 2006, doi: https://doi.org/10.1016/j.snb.2005.08.031.
  • [29] C. Saravanan, S. Palaniappan, and F. Chandezon, “Synthesis of nanoporous conducting polyaniline using ternary surfactant,” Materials Letters, vol. 62, no. 6, pp.882-885, 2008, doi: https://doi.org/10.1016/j.matlet.2007.07.003.
  • [30] P. S. Rao, D. N. Sathyanarayana, and S. Palaniappan, “Polymerization of Aniline in an Organic Peroxide System by the Inverted Emulsion Process,” Macromolecules, vol. 35, no. 13, pp.4988-4996, 2002, doi: 10.1021/ma0114638.
  • [31] M. A. C. Mazzeu, L. K. Faria, M. R. Baldan, M. C. Rezende, and E. S. Gonçalves, “Influence of reaction time on the structure of polyaniline synthesized on a pre-pilot scale,” Brazilian Journal of Chemical Engineering, vol. 35, no. 1, pp.123-130, 2018.
  • [32] R. Gangopadhyay, A. De, and G. Ghosh, “Polyaniline–poly(vinyl alcohol) conducting composite: material with easy processability and novel application potential,” Synthetic Metals, vol. 123, no. 1, pp.21-31, 2001, doi: https://doi.org/10.1016/S0379-6779(00)00573-7.
  • [33] V. M. Abbasov, H. C. Ibrahimov, G. S. Mukhtarova, and E. Abdullayev, “Acid treated halloysite clay nanotubes as catalyst supports for fuel production by catalytic hydrocracking of heavy crude oil,” Fuel, vol. 184, pp.555-558, 2016, doi: https://doi.org/10.1016/j.fuel.2016.07.054.
  • [34] K. Belkassa, F. Bessaha, K. Marouf-Khelifa, I. Batonneau-Gener, J.-d. Comparot, and A. Khelifa, “Physicochemical and adsorptive properties of a heat-treated and acid-leached Algerian halloysite,” Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 421, pp. 26-33, 2013, doi: https://doi.org/10.1016/j.colsurfa.2012.12.048.
  • [35] A. G. MacDiarmid and A. J. Epstein, “Secondary doping in polyaniline,” Synthetic Metals, vol. 69, no. 1, pp.85-92, 1995, doi: https://doi.org/10.1016/0379-6779(94)02374-8.
  • [36] M. M. Ayad and M. A. Sheneshin, “Effect of acids on in situ polyaniline film formation,” Polymer International, vol. 53, no. 8, pp. 1180-1184, 2004, doi: 10.1002/pi.1532.
  • [37] S. S. Zargarian, V. Haddadi-Asl, and H. Hematpour, “Carboxylic acid functionalization of halloysite nanotubes for sustained release of diphenhydramine hydrochloride,” Journal of Nanoparticle Research, vol. 17, no. 5, pp. 218, 2015, doi: 10.1007/s11051-015-3032-3.
  • [38] P. Yuan, P. D. Southon, Z. Liu, M. E. Green, J. M. Hook, S. J. Antill, and C. J. Kepert, “Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyltriethoxysilane,” The Journal of Physical Chemistry C, vol. 112, no. 40, pp.15742-15751, 2008.
  • [39] Q. He, D. Yang, X. Deng, Q. Wu, R. Li, Y. Zhai, and L. Zhang, “Preparation, characterization and application of N-2-Pyridylsuccinamic acid-functionalized halloysite nanotubes for solid-phase extraction of Pb (II),” Water Research, vol. 47, no. 12, pp. 3976-3983, 2013.
  • [40] P. R. Chang, Y. Xie, D. Wu, and X. Ma, “Amylose wrapped halloysite nanotubes,” Carbohydrate Polymers, vol. 84, no. 4, pp.1426-1429, 2011, doi: https://doi.org/10.1016/j.carbpol.2011.01.038.
  • [41] M. Arora, V. Luthra, R. Singh, and S. K. Gupta, “Study of vibrational spectra of polyaniline doped with sulfuric acid and phosphoric acid,” Applied Biochemistry and Biotechnology, vol. 96, no. 1, pp. 173-181, 2001, doi: 10.1385/ABAB:96:1-3:173.
  • [42] M. Trchová and J. Stejskal, “Polyaniline: The infrared spectroscopy of conducting polymer nanotubes (IUPAC Technical Report),” in Pure and Applied Chemistry, 2011. pp. 1803.
  • [43] E. T. Kang, K. G. Neoh, and K. L. Tan, “Polyaniline: A polymer with many interesting intrinsic redox states,” Progress in Polymer Science, vol. 23, no. 2, pp.277-324, 1998, doi: https://doi.org/10.1016/S0079-6700(97)00030-0.
  • [44] M. I. Boyer, S. Quillard, E. Rebourt, G. Louarn, J. P. Buisson, A. Monkman, and S. Lefrant, “Vibrational Analysis of Polyaniline:  A Model Compound Approach,” The Journal of Physical Chemistry B, vol. 102, no. 38, pp. 7382-7392, 1998, doi: 10.1021/jp972652o.
There are 44 citations in total.

Details

Primary Language English
Subjects Engineering
Journal Section Articles
Authors

Meryem Kalkan Erdoğan 0000-0002-2905-4438

Meral Karakışla 0000-0001-7036-094X

Project Number 12B4240005
Publication Date April 25, 2021
Published in Issue Year 2021 Volume: 9 Issue: 2

Cite

APA Kalkan Erdoğan, M., & Karakışla, M. (2021). Preparation of a Clay Composite Containing Poly(o-toluidine) and Halloysite, and Examining of Its Performance as a Humidity Sensor. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, 9(2), 521-534. https://doi.org/10.29130/dubited.836431
AMA Kalkan Erdoğan M, Karakışla M. Preparation of a Clay Composite Containing Poly(o-toluidine) and Halloysite, and Examining of Its Performance as a Humidity Sensor. DUBİTED. April 2021;9(2):521-534. doi:10.29130/dubited.836431
Chicago Kalkan Erdoğan, Meryem, and Meral Karakışla. “Preparation of a Clay Composite Containing Poly(o-Toluidine) and Halloysite, and Examining of Its Performance As a Humidity Sensor”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi 9, no. 2 (April 2021): 521-34. https://doi.org/10.29130/dubited.836431.
EndNote Kalkan Erdoğan M, Karakışla M (April 1, 2021) Preparation of a Clay Composite Containing Poly(o-toluidine) and Halloysite, and Examining of Its Performance as a Humidity Sensor. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 9 2 521–534.
IEEE M. Kalkan Erdoğan and M. Karakışla, “Preparation of a Clay Composite Containing Poly(o-toluidine) and Halloysite, and Examining of Its Performance as a Humidity Sensor”, DUBİTED, vol. 9, no. 2, pp. 521–534, 2021, doi: 10.29130/dubited.836431.
ISNAD Kalkan Erdoğan, Meryem - Karakışla, Meral. “Preparation of a Clay Composite Containing Poly(o-Toluidine) and Halloysite, and Examining of Its Performance As a Humidity Sensor”. Düzce Üniversitesi Bilim ve Teknoloji Dergisi 9/2 (April 2021), 521-534. https://doi.org/10.29130/dubited.836431.
JAMA Kalkan Erdoğan M, Karakışla M. Preparation of a Clay Composite Containing Poly(o-toluidine) and Halloysite, and Examining of Its Performance as a Humidity Sensor. DUBİTED. 2021;9:521–534.
MLA Kalkan Erdoğan, Meryem and Meral Karakışla. “Preparation of a Clay Composite Containing Poly(o-Toluidine) and Halloysite, and Examining of Its Performance As a Humidity Sensor”. Düzce Üniversitesi Bilim Ve Teknoloji Dergisi, vol. 9, no. 2, 2021, pp. 521-34, doi:10.29130/dubited.836431.
Vancouver Kalkan Erdoğan M, Karakışla M. Preparation of a Clay Composite Containing Poly(o-toluidine) and Halloysite, and Examining of Its Performance as a Humidity Sensor. DUBİTED. 2021;9(2):521-34.