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Abstract  In this study, var iation of the task times, and 

precedence relation effects are investigated to evaluate the line 
per formance. A new solution procedure based on queueing 
networks and constraint programming is proposed to model and 
solve the Assembly L ine Balancing Problem (ALBP). Station 
utilization, total average number  of jobs and smoothness index 
are used as per formance measures. Bowl effect, inver ted bowl 
effect and var iability imbalance which are seen in balanced lines 
are examined by using proposed procedure. Also effects of the 
var iability on the line per formance are reviewed. L iterature data 
sets are utilized to assess the effectiveness of the procedure. 
 
Index Terms  Assembly line balancing, bowl effect, constraint 
programming, queueing networks 

 

I. INTRODUCTION 

Processing sub-parts to produce a final product on a serial line 
is defined as an assembly line (AL). Assembly lines are 
preferred flow line production systems in high quality and 
large volume productions. Assembly line balancing problem 
(ALBP) is to determine the appropriate task assignment while 
satisfying some restrictions with an objective.  
 

A. Bowl Phenomenon for ALBP 

The output rate of an assembly line is related to distribution 
of task times. If the operation times are assumed to be 
stochastic, then the bowl phenomenon arises in unpaced lines. 
Bowl phenomenon states that the stations in the middle should 
have less utilization than start or end of the line for optimal or 
better outputs Scholl [1]. A typical bowl phenomenon chart is 
depicted in Figure 1 (Scholl [1]).  

Buffer size between the stations influences existence of the 
bowl phenomenon, since output rate of the line can be changed 
when the buffer sizes in the center of the line are increased 
compared to start or end of the line. So determination of output 
rate is a crucial step to construct the bowl-shaped work load 
distributions. The output rates may be estimated by using the 
simulation or queueing theory for unpaced assembly lines 
(Scholl [1]).  

 

 
 

 
Fig. 1. Bowl Phenomenon 

Increment of the output rate can be described with bowl 
phenomenon by increasing the task times or by changing the 
system variability in imbalanced assembly line Rao [2]. The 
coefficient of variation (CV) is used to determine the system 
variability.  

There are some studies on the bowl phenomenon in the 
literature. Rao [2] analyses the serial production system with 
deterministic and exponential time in terms of the bowl 
phenomenon. He shows that if the differences in the 
coefficients of variation of production stages are generally less 
than 0.5, bowl phenomenon is constructed.  When the 
differences exceed 0.5, variability imbalance is constructed.  

Hillier and So [3] studied the effect of the coefficient of 
variation of operation times on the optimal allocation of 
storage space in production line systems. Task times are 
assumed as Coxian distribution. Providing that the overall 
optimal solution follows the bowl phenomenon, the optimal 
buffer allocation of buffer storage space fits an inverted bowl. 

Das et al. [4] recently presented a study to evaluate the bowl 
phenomenon by using the simulation for assembly line. In this 
study, we investigate the bowl phenomenon for the assembly 
line which has normal and exponential task times with variance 
among 1 and 16. Bowl effect rises on the optimal solution with 
the normally distribution task times and also inverted bowl 
effect rises with the exponential task times.  

This paper is organized as follows: After this introduction, a 
literature review has been given in Section 2. The 
mathematical model of type-F problem is presented in Section 
3. The proposed solution procedure, constraint programming 
model and queueing network model (Diffusion approximation) 
are given in Section 4 respectively. The computational results 
with the proposed model to a set of test problems are presented 
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in Section 5. And also bowl effect is examined in Section 5. 
Conclusions are given in the last section.  

 

II. LITERATURE REVIEW 

AL is classified by line layout in three settings: 
traditional/serial line, u-type line and parallel line with single, 
multi or mix model. ALBP is first modeled mathematically by 
Salveson [5]. Following this study, several studies considering 
different line layouts have been investigated in the literature. 
In these studies heuristic or meta-heuristic procedures have 
been proposed as well as exact solution algorithms. To give a 
brief on ALBP studies, literature reviews are examined in 
respect of these authors: Scholl [1], Erel and Sarin [6], Scholl 
and Becker [7], Becker and Scholl [8]. 

ALBP is classified in two types regarding the task times: 
deterministic and stochastic. Most assembly line studies 
assume deterministic or constant task time due to the skilled 
and motivated workers during the period of continuous 
process. But in real life the task times may vary. Due to 
machine breakdowns, motivation loss, lack of training, 
unqualified operators, complex tasks etc., the task times are 
stochastic.  This problem is called as Stochastic ALBP 
(SALBP) where each task has a probability function with a 
mean and variance.  This problem is also NP-hard 
combinatorial problem alike the deterministic case Scholl [1].  

There are three main classes in ALBP in terms of the 
presence of objective function: Type 1, Type 2 and Type-F. 
Type 1 aims to minimize the number of stations for a given 
number of cycle time.  Type 2 seeks to minimize the cycle 
time for a given number of stations. When there is no objective 
function, the ALBP problem reduces to a problem which 
consists of finding out whether or not a task assignment exists 
for a given number of stations and cycle time. In the literature, 
type 1 problems are studied more than type 2 and type-F.  

This research studies serial line, stochastic ALBP with a 
new objective function of maximizing the utilization of the 
stations. 

The stochastic ALBP was first addressed by Moodie and 
Young [9]. Kottas and Lau 1981 [10] presented a heuristic 
procedure for paced assembly line with stochastic task times. 
Their objectives were minimizing the sum of incompletion and 
labor cost. Silverman and Carter [11] analyzed the effect of 
stochastic task times on total operating costs of assembly line 
under the assumption that the line is stopped. Sarin et al. [12] 
developed a methodology to solve the stochastic assembly line 
balancing problem for the objective of total labor cost and 
incompletion cost. Their methodology was based on DP and 
branch-and-bound procedure. Also several studies on other 
type assembly line balancing problems have been reported in 
the literature: for mixed model (Xiaobo et al. [13], Sun and 
Li[14]), for u-  
al. [16]), for parallel line (Cakir et al. [17], McMullen and 
Tarasewich [18]) and for two-  

ALB problems are usually modeled as an integer 
programming and several solution methods are proposed 
accordingly as exact, heuristics and metaheuristcs. Carraway 
[20] presented two dynamic programming algorithms for the 

problem of minimizing the number of workstations with 
normally distributed task times. A simulated annealing 
technique was presented by Suresh and Sahu [21]. Liu et al. 
[22] proposed a heuristic algorithm to solve the type-2 
stochastic assembly line balancing problem.  

This study develops Constraint Programming (CP) 
methodology as a solution approach. CP is an alternative 
programming technique which utilizes logical expressions 
using computer programming Apt [23] and combines 
effectiveness of finding a solution with linear programming 
especially, logical expressions which can be hard to define  in 
linear programming can be defined easily in constraint 
programming.  

CP has been used to solve several NP-Hard combinatorial 
problems. Especially, scheduling applications with various 
production systems can be found in the literature. Khayat et al. 
[24], Hladik et al. [25], Zeballos [26], Troject et al. [27], Li 
and Womer [28], Terekhov et al. [29] are presented studies in 
recent years.  

Another unique contribution of this study is modeling 
assembly line as a queueing network to incorporate stochastic 
task times. Queueing models are used to analyze the 
performance of several manufacturing systems. In queueing 
applications, assembly line is generally dealt with a system 
which has exponential service times and Poisson arrival times 
e.g. Latouche and Neuts [30], Lipper and Sengupta [31]. Less 
applications of assembly line in queueing theory is related to 
deterministic times. Duenyas and Hopp [32] considered the 
assembly system feeding through more than one serial line 
with deterministic task time. Azaron et al. [33] developed a 
method which optimizes the due date in the multi stage 
assembly systems using decomposition method. Manitz [34] 
studies the production process belonging to fractional 
assembly lines. For these lines, he shows that arriving products 
following the previous station has unsynchronized stochastic 
task times and queueing can  effect these lines in terms of the 
buffer capacity. And Lazaro and Perez [35] has  modeled the 
assembly line as a closed loop network which consist of the 
machines that have the blocking and idle time probability with 
buffers on the conveyor. Manufacturing applications (e.g. 
flexible manufacturing systems, transfer and production lines, 
assembly/disassembly systems, flow lines etc.) of queueing 
networks can be investigated in detail from these literature 
review studies: Jackman and Johnson [36], Papadopoulos and 
Heavy [37] and Govil and Fu [38].  

the queueing networks and constraint programming has not 
been developed by the researchers for ALBP. In this study, a 
novel solution procedure is proposed for stochastic ALBP. 
Firstly, a constraint programming model is utilized for 
obtaining the feasible task assignments. Then, an open 
queueing network algorithm of Diffusion Approximation 
combined with constraint programming model is used to 
measure the performance of the line. Also bowl phenomenon 
is investigated on the stochastic unpaced assembly line with 
general service time distributions.  
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III. MATHEMATICAL MODEL OF ALBP 

In this section, we give the underlying assumptions and the 
mathematical model of the Type-F ALBP. This problem 
minimizes the cycle time for a given number of stations. In 
practical, Type-F problems are more suitable in terms of the 
rebalancing the line. In this context, basic assumptions of 
related ALBP are given as follows: 
(i)     Task times are probability distributions in which the 

parameters are known.  
(ii) The precedence relationships among the tasks are known. 
(iii) A task must be assigned to only one station.  
(iv) Tasks are indivisible. 
(v) A single model assembly line is considered. 
(vi) Parallel tasks and parallel stations are not allowed. 
(vii) An unpaced serial line is considered. 
(viii) A worker is assigned at each station with similar 

specifications. 

Accordingly, we adopt the mathematical model of 
deterministic type-F problem which was developed by 
Patterson and Albracht [39].  

Subject to  

 (1) 

 (2) 

 (3) 

 (4) 

In this model, Constraint (1) ensures that each task must be 
assigned to exactly one station. Precedence relations among 
the tasks are satisfied through Constraint (2). Constraint (3) is 
the cycle time constraint and it ensures that any station time 
must not be exceeded the cycle time. Constraint (4) is variable 
definition and it is satisfied the binary variable conditions. 

Traditional ALBP has two main objective functions: 
minimization of the cycle time and minimization of number of 
the stations. But several objectives in terms of the different 
characteristics of the assembly line are considered to balance 
the line as mentioned above. In this study we consider the 
objective function as equalization of the station utilization. In 

this way, the workload will be distributed among the station as 
uniformly as possible and the line will be balanced. To 
equalize the station utilization, we use to smoothness index 
given in Equation (5) Scholl [1]. Task assignment which has 
the minimum smoothness index value is an optimum 
assignment in efficient assembly line.  

             (5) 

Also total average number of jobs in the station as an 
objective is considered to balance the line by reducing the 
number of the incompleted tasks. These objective functions 
values are computed using queueing networks approach. 

Earliest and latest station bound are satisfied for ALBP as 
constraints in the CP model. In this study, these bound 
proposed from Klein and Scholl [40] are considered in 

Equation (6) and Equation (7).  is the least station number 

to be assigned for a task . is the biggest station number to 

be assigned for a task . is a set of the predecessors of task 

and is a set of the followers of the task . 

       (6)

  (7) 

IV. SOLUTION PROCEDURE 

A. Constraint Programming 

Constraint Programming (CP) is an alternative programming 
technique, generated by combining effectiveness in achieving 
the optimal solution of linear programming and easy definition 
property of logical expressions of computer programming 

of values that can be assigned to variables. Each constraint is 
defined as relation of between some variables related to their 
domains. 

To formulate a problem as a constraint programming model: 
 Define the variables and constraints and domains 

associated with variables 

 Select a language to be identified the constraints Apt 
[23]. 

CP is classified the two main type in terms of the existence 
of the objective function. If there is no objective function, CP 
model is named Constraint Satisfaction Problem. If there is an 
objective which is a function such as minimizing or 
maximizing, this problem is Constraint Optimization Problem. 

CP uses a systematic procedure to find a feasible solution 
which consists of two main steps. 

 
1. Search Tree: In the search tree, a decision variable is 
declared as a node and a possible assignment shows a branch 
related to variables. The search starts with an empty 
assignment and proceeds until there are no variables that can 
be assigned a value. If the search could not be reached a 
possible solution, backtracking mechanism is executed to try 
some other branches. We can use four strategies according to 
problem size and problem type as follows in the used software: 

(i). Depth first strategy 
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(ii). Multi-point strategy 
(iii). Restart strategy 
(iv). Automatic 

 
In this study, automatic search strategy is 

preferred as default setting. 
2. Propagation and domain reduction: The propagation is 
used to filter the variable domains by eliminating the 

constraints related to that variable are propagated. Domain 
reduction is a process which removes the non-assigned 
variable values that do not satisfy the constraints. So we obtain 
a consistent assignment at every iteration of the backtracking. 
 

B. Constraint Programming Model for ALBP 

In this study, we use CP to assign the task to the stations for 
assembly line balancing problems. All feasible task 
assignments are found via CP under precedence constraints, 
bound of earliest and latest station number of tasks. So 
proposed CP model for ALBP is as follows: 
 

Decision variable: 

         (8) 

Decision variable is stated the assigned number of station 

for task and is an integer value between . 

 

Precedence relations: Precedence between task and  is 
indicated as follows. 

   (9) 

 
Occurrence and station restrictions: Each task must be 

assigned to a station. 

  (10) 

 
as a function is a special construct in IBM ILOG 

CP Software which is performed the proposed constraint 
programming model. Using this form, at least one of 

the variables has taken the station number . 

 
Earliest and latest stations restrictions:  The variable 

of  must be greater or equal to and less or equal 

to: 

                   (11) 

                   (12) 

 

C. Queueing Network Model and Performance Evaluation 

Queueing network can be classified as open and closed 
networks, topologically. When the jobs can enter into any node 
from outside and leave the network from any node, this 
queueing network is defined as open. But if jobs cannot enter 
into and leave the network, this system is said to be closed. We 
depicted an open queueing network in Fig. 2. The arrows 

indicate the flow of workpieces, the rectangles represent the 
buffers and circles indicate the service stations. A workpiece is 
launched down the material handling system (e.g. pallets, 
conveyors etc.). Workpieces are processed into the stations 
respectively. They leave the system after processing at the last 
station. If the buffer capacity is not infinite and the buffer is 
full, the workpieces wait for a while and the current station is 
blocked. 

 
Fig. 2. An open queueing network 

A workstation in the assembly line can be considered as a 
service station in the queueing network. Every node in 
queueing model represents   stations which the set of tasks are 
assigned to. The stochastic assembly line has a general station 
time consisting of a mean tasks time and variances inherently. 
When considered from this aspect, we could model an 
assembly line as a queueing network. The task assignment into 
the nodes and the conceptual framework of such assembly line 
as queueing network can be presented in Fig. 3. 

 
THEOREM: If a set of task assigned into a station are 

normally distributed with a certain averages and variances, 
total time of that station can be determined by using the 
aggregation property of normal distributions. The station time 

 Equation (15) is obtained in such a way 

that as it is given in Equation (13) for average of station time 
and Equation (14) for variance of station time. 

 (13)

 (14)

           (15) 

Generally, CV is used to characterize the relation between 
mean and variance. is the normalized measure of 
dispersion for a probability distribution. It can be concisely 

defined as the ratio of standard deviation to the mean  

as shown in Equation (16). CV is used to convert the 
deterministic task times to the stochastic task times in the 
proposed procedure as the input parameters. 

                   (16) 

Accordingly, an assembly line can be depicted as an open 
queueing network with arrival rate  and service (station) rate 

( ). There is no blocking in the system and 

buffer size between each station is infinite. As soon as a job is 
finished at any station within the current station time, it is 
released it onto the conveyor belt. This situation can be 
described as unpaced line in assembly line balancing literature. 
Arrival rate in queueing networks can be defined as the 
system workload as mentioned by the production rate in the 
assembly line. 
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Fig. 3. Framework of assembly line queueing model  

D. Diffusion Approximation 

Considering that an assembly line where task times have an 
average and a variance, we can model this line with general 
time queueing network (with Kendall notations as GI/G/1). 
GI/G/1 queueing network consists of general arrival and 
service rate for each node in the network (i.e. for each station 
in the line). So to evaluate the line performance we use 
Diffusion Approximation as a GI/G/1 model approximation 
technique. Although deriving the diffusion approximations are 
very complex, application of the diffusion approximation on 
any problem is very simple (Bolch et al., [41]). 

The overall approximation method of Diffusion 
approximation algorithm can be summarized as follows: 

 
Step 1. Compute the utilizations for each nodes 

k

k

k

e
k W  (17) 

Step 2. Compute the coefficient of variation of interarrival 
times for each nodes.  

 (18) 

Step 3. Update the utilizations  

 (19) 

Step 4. Compute the mean number of jobs for each nodes.  

 (20) 

Traffic intensity ( ) is a general result and an important 
relation to prevent the blocking the line in GI/G/1 queues. 
When , the mean number of arrivals into the line exceeds 
the maximum mean service rate of the line. In this situation, 
the line is not steady-state conditions any more. must be 
strictly fulfilled to reach the steady-state conditions.  

k Wti
k

 (21) 

 

E. Proposed Solution Procedure 

A two-step algorithm is proposed to balance and evaluate 
the stochastic assembly line by using CP and queueing 
network. In the first step, feasible task assignment 
combinations are generated using Constraint Programming 
model. Precedence relations, assignment restrictions and task 
times are inputs of this step which are controlled with station 
restrictions. Station times and task assignments are output of 
this step. In the next step, the feasible combinations are 
evaluated using queueing network approach. The best 
combination is determined under control the pre-defined 
algorithm parameters. The Integration Definition functional 
modeling is shown in Fig. 4 with inputs, outputs, controls and 
mechanism of the procedure. 

The corresponding proposed solution algorithm is explained 
in details with the following steps (where CurSI=smoothness 
index of current assignment, BestSI= smoothness index of best 
assignment, CurAssign=current task assignment by generating 
CP, BestAssign=best task assignment) 

 

 
Fig. 4. Proposed solution procedure 

 
Step 0. CurSI=BigNumber, BestSI=BigNumber, 

CurAssign BestAssign  
Step 1. Generate a feasible task assignment and stations 

times satisfying all ALBP constraints by using CP 
model. 

Step 2. Run the diffusion approximation based on the 
current task assignment. 

Step 3. Calculate performance measurements related to 
current assignment ( ). 

Step 4. If CurSI<BestSI then BestSI=CurSI and 
BestAssign=CurAssign, else go to Step 5. 

Step 5. If there is no feasible task assignment obtained 
from CP model then go to Step 6, else go to Step 1. 

Step 6. Terminate the algorithm and report the assignment 
with best performance. 

 

V. COMPUTATIONAL RESULT 

We obtain feasible task assignment combinations using the 
CP model. Then performance evaluation is carried out by 
means of the diffusion approximation based on the assembly 
line queueing model. The task assignment that has minimum 
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smoothness index value is optimal assignment. Performance 
measurements are station utilizations and total average number 
of jobs in the line.  

Proposed procedure is coded by using IBM ILOG CP 
Optimizer software package and all experiments are performed 
in personal computer in Intel i5-2410M 2.30 GHz processor 
and 4 GB RAM. Effect of the variation of the task times and 
on the assembly line performance and balance is studied.  

A. Effects of the variation of the task times 

A task time depends on some system parameters such as 
complexity of task, experience and motivation of operator and 
machine breakdowns etc. In this case, variation of task time 
can be different for each task in the line.  

Three test problems in the literature such as Jaeschke, 
Jaskcson and Mitchell are tested with proposed procedure. 
Data sets are tested with different variation of task time in this 
stage. The task times of the original problems are used as the 
means of the tasks and the task variance are randomly 

studies, low task variances are generated between zero and 

( /4)2 and high task variances are generated between zero and 

( /2)2. In this study, these variance levels are converted the 

coefficient of variation using Equation (16) and we used the 
CV as [0, 0.25] for low task CV, [0, 0.5] for medium task CV 
and [0, 1] for high task CV. Each test problem is tested five 
times using proposed procedure. Mean performance 
measurements of these five run are reported. Computational 
results are given in Table 1 - Table 3. 

As it can be seen at Table 1  Table 3, total average number 
of jobs in the line changes with different task CV levels. 

Considering the Mitchell problem, when the is assumed to 
22, the numbers of jobs are obtained as 9.418 for low task CV, 
10.252 for medium task CV and 20.422 for high task CV. This 
situation is same for the other test problems.  

Computational results show that system workload ( ) has a 
direct effect on the utilization of stations. We can easily 
observe this conclusion by analyzing Jaeschke sample 
problem. In this problem, mean line utilizations are obtained as 
0.728 when is 7, 0.637 when is 8 and 0.567 when is 9. 
When the coefficient of variation of tasks are changed to 
different levels, mean utilization of the line remains constant. 
This situation arise from determining the utilization step in 
diffusion approximation where is obtained by using the 
Equation (17). 

A remarkable result obtained from computational results is 
that optimum task assignment combination has been different 
when the variations of tasks are changed. Considering Jackson 
with four stations in Table 3, for optimum task 
assignment to the stations is (1,2,3,5)[13]; (4,6,7)[12]; 
(8,9)[11]; (10,11)[9] for low variation; (1,2,5,6)[11]; 
(4,8)[13]; (3,7,10)[12]; (9,11)[9] for medium variation; 
(1,3,5)[11]; (2,4,7)[12]; (6,8,10)[13]; (9,11)[9] for high 
variation (values in box bracket imply the mean station times).  

 

 

TABLE I. 

COMPUTATIONAL RESULTS OF JAESCHKE PROBLEM  

#task #station CV  SI  total K CPU time 

9 3 Low 14 0.258 0.881 - 0.140 

15 0.240 0.822 2.962 0.130 

16 0.225 0.771 2.593 0.220 

Medium 14 0.258 0.881 - 0.140 

15 0.240 0.822 3.035 0.740 

16 0.225 0.771 2.747 0.180 

High 14 0.258 0.881 - 0.200 

15 0.240 0.822 4.771 0.140 

16 0.225 0.771 2.981 0.190 

4 Low 10 0.224 0.925 - 0.240 

11 0.203 0.841 3.961 0.240 

12 0.186 0.771 3.383 0.340 

Medium 10 0.224 0.925 - 0.250 

11 0.203 0.841 4.069 0.250 

12 0.186 0.771 3.411 0.290 

High 10 0.224 0.925 - 0.300 

11 0.203 0.841 9.706 0.290 

12 0.186 0.771 3.579 0.260 

7 Low 7 0.728 0.755 - 0.900 

8 0.637 0.661 4.722 0.840 

9 0.567 0.587 4.138 0.770 

Medium 7 0.728 0.755 - 0.930 

8 0.637 0.661 4.854 1.130 

9 0.567 0.587 4.231 0.900 

High 7 0.728 0.755 - 1.090 

8 0.637 0.661 7.630 0.890 

9 0.567 0.587 5.777 1.040 

 
TABLE II. 

COMPUTATIONAL RESULTS OF JACKSON PROBLEM  

#task #station CV  SI  total K CPU time 

11 3 Low 16 0.000 0.938 5.903 11.240 

17 0.000 0.882 3.907 12.140 

18 0.000 0.833 3.182 12.280 

Medium 16 0.000 0.938 6.233 10.840 

17 0.000 0.882 3.960 12.570 

18 0.000 0.833 3.206 10.830 

High 16 0.000 0.938 10.673 10.850 

17 0.000 0.882 5.472 11.120 
18 0.000 0.833 3.618 9.680 

4 Low 13 0.353 0.865 - 19.110 

14 0.327 0.804 5.827 25.040 
15 0.306 0.750 4.028 19.330 

Medium 13 0.353 0.865 - 19.580 

14 0.327 0.804 6.125 19.760 

15 0.306 0.750 4.041 19.390 

High 13 0.353 0.865 - 18.540 
14 0.327 0.804 8.181 19.550 

15 0.306 0.750 4.698 19.210 
5 Low 11 0.464 0.818 - 21.660 

12 0.425 0.750 4.057 20.140 

13 0.392 0.692 3.603 20.900 
Medium 11 0.464 0.818 - 26.460 

12 0.425 0.750 4.338 20.860 

13 0.392 0.692 3.769 25.56 
High 11 0.464 0.818 - 26.53 

12 0.425 0.750 6.474 22.33 

13 0.392 0.692 4.989 20.02 
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TABLE III. 

COMPUTATIONAL RESULTS OF MITCHELL PROBLEM  

#task #station CV  SI  total K CPU time 

21 3 Low 36 0.000 0.972 11.073 19.030 

37 0.000 0.946 6.558 16.760 

38 0.000 0.921 5.028 20.310 
Medium 36 0.000 0.972 11.769 20.000 

37 0.000 0.946 6.742 19.100 
38 0.000 0.921 5.086 19.070 

High 36 0.000 0.972 14.840 18.380 

37 0.000 0.946 8.882 18.210 

38 0.000 0.921 6.034 25.290 
5 Low 22 0.000 0.955 9.418 100.600 

23 0.000 0.913 6.589 105.490 

24 0.000 0.875 5.524 92.760 

Medium 22 0.000 0.955 10.252 106.660 
23 0.000 0.913 6.988 109.940 
24 0.000 0.875 5.574 108.040 

High 22 0.000 0.955 20.422 80.290 
23 0.000 0.913 8.544 112.580 

24 0.000 0.875 6.606 108.190 
8 Low 14 * * * * 

*We do not reach the optimal solution 

B. Discussion of bowl effects 

Fig. 2  shows bowl phenomenon in terms of the station 
utilizations for Jaeschke and Jackson problems. For Jackson 
problem inverted bowl is found out with 4 stations and high 
CV level. But, variability imbalance arises for Jaeschke 
problem 7 stations and medium CV level. Similar situation has 
been reported by Rao [2]. Rao [2] says that load from the more 
variable stages should be transferred to the less variable ones 
for variability imbalance to balance the line. And also Fig. 3 
shows that variability imbalance for these problems 
respectively in terms of the total average number of jobs in the 
line. Mitchell problem shows almost same bowl effect of 
stations for both performance measurements.  

Variations of between stations are related to station task 
time distributions and coefficient of variations of task times. 
We can say that while a job proceeds from a station with high 
CV level to a station with low CV level, line can be more 
variable and bowl effect can be return to inverted bowl or 
variability imbalance effects. And also if a job proceeds from a 
station with high station time to a station with low station time, 
same situation can be occurred for optimum balanced line.  

These situations are defined the possible bowl effect shapes 
for balanced stochastic assembly line. The results show that 
bowl phenomenon affects shapes in terms of the station 
utilizations and total average number of jobs. So, balancing the 
line with these performance measurements is meaningful and 
realistic for assembly line balancing problems.  

 

 

 

 

 

 

 
Fig. 2. Bowl effect on station utilizations  

 
 

Fig. 3. Bowl effect on total average number of jobs  

 

VI. CONCLUSION 

In this paper, stochastic single model assembly line 
balancing problem is studied by using constraint programming 
and queueing network approach. The resulting bowl 
phenomenon is analyzed in terms of the performance 
measurements of stations utilizations and total average number 
of jobs in the line. Inverted bowl effect and variability 
imbalance is shaped for test problems. Also an interesting 
result is that the optimum task assignment has been changed 
for optimum line balance while task time variability is 
changed. Proposed procedure is effective for the problem. For 
further researches, other types of assembly line balancing 
problems should be interest. 
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NOMENCLATURE 

 
Mathematical and CP Model 

 decision variable of mathematical model. 1, if task  is 

assign at the station; 0, other wise  

 the set of tasks 

 number of elements of set  

 the set of workstations 

 number of elements of set  

 
time of task  

 
mean time of task  

 
standard deviation of task  

 
time of station  

 the set of tasks assigned to the station  

 
mean time of station  

 
standard deviation of station  

 cycle time 

 production or output rate 

 Earliest station bound for task  

 
latest station bound for task  

 the set of the predecessors of task  

 the set of the followers of the task  

 The set of precedence relations among tasks, for instance 

task precedes task .  

 
 
 
 

Queueing networks 

 utilization of station  

 traffic intensity 

 arrival rate (system workload) 

 visit ratios of station  

 service rate of station  

 coefficient of variation of interarrival time 

 coefficient of variation of service time  

 squared coefficient of variation of interarrival time for 

station  

 
squared coefficient of variation of service time for station 

 

 routing probability 

 updated utilization of station  

 mean number of jobs of station  

 coefficient of variation 

 


