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THIRD-ORDER LINEAR PROPORTIONAL DYNAMIC
EQUATIONS
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Abstract

The differentiation and integration of an integer order are known as fractional calculus. It is possible to think of
the proportional derivative as a generalization of a congruent fractional derivative, which is one of the types of
fractional calculus. In this article, utilizing the proportional derivative and its characteristics on the time scale, the
method of variation of parameters for the third-order linear nonhomogeneous differential equations is given. Then,
an example is provided to illustrate how to apply the provided approach.
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1. Introduction

The conformable derivative is a unique mathematical operator that expands the idea of differentiation to non-
integer orders (Katugampola, 2014; Khalil et al., 2014; Abdeljewad, 2015). The conformable derivative offers a
more understandable and natural framework for dealing with non-integer differentiation than conventional
fractional calculus operators like the Riemann-Liouville or Caputo derivatives. Due to its capacity for modeling
complex events showing fractal or anomalous behavior, the idea of non-integer differentiation has received a great
deal of interest (Ortigueira & Machado, 2015). For the study of dynamic equations that incorporate both continuous
and discrete time periods, the conformable derivative on time scales offers a coherent framework. Time scales
expand the idea of real numbers to encompass discrete and continuous time domains, making it possible to
represent a wider range of equations in greater detail. The conformable derivative depends on forward and
backward difference quotients instead of integrals, which are necessary for fractional derivatives, making it easier
to obtain and compute.

The conformable derivative on time scales has a variety of advantageous characteristics, such as linearity, the
chain rule, and compatibility with conventional differentiation operators on real numbers. On time scales, physics,
engineering, biology, and finance are just a few of the disciplines that the conformable derivative is used in. The
conformable derivative on time scales has received a lot of interest recently from the scientific community
(Benkhettou et al., 2015; Benkhettou et al., 2016; Gulsen et al., 2017; Giilsen et al., 2018; Yilmaz et al., 2022).

Even if the more inclusive definition of the proportional derivative given in Definition 1 below meets some of the
characteristics of the fractional derivative, it is still best to consider the proportional derivative independently,
separate from the theory of fractional derivatives. As a result, the proportional derivative reported in Anderson &
Ulness (2015) was renamed a conformable derivative, and a prospective definition for the proportional derivative
on a time scale was found in Segi Rahmat (2019). A specific case of the proportional derivative is the conformable
derivative. When the order is equal to 1, the proportional derivative of a function defined on the time scale becomes
the Hilger derivative.

Non-homogeneous linear differential equations can be solved using the variation of parameters approach. When
used with third-order differential equations on time scales, it entails locating a specific solution under the
presumption that the coefficients of the solution are functions of the independent variable. This approach offers a
potent tool for resolving intricate differential equations that appear in a variety of scientific and engineering
disciplines. For the second-order nonhomogeneous dynamic equation via the proportional derivative, the variation
of parameters is given in Anderson & Georgiev (2020), but for the third-order nonhomogeneous dynamic equation
via the proportional derivative, it has not been studied before, according to our research.

*Sorumlu Yazar (Corresponding Author): Gelis (Received) :05.07.2023
Tuba GULSEN; Department of Mathematics, Faculty of Science, Firat University, Kabul (Accepted) :04.09.2023
23119, Elazig Basim (Published) :31.12.2023



GULSEN et al. Bartin University International Journal of Natural and Applied Sciences
JONAS, 2023, 6(2): 135-144

In this paper, we aim to explore the theory and applications of the variation of parameters for the third-order
nonhomogeneous dynamic equation via the proportional derivative. Basic ideas and notations relating to time
scales and proportional derivatives on time scales are presented in Section 2. The technique of variation of
parameters produced for solving the third-order proportional derivative nonhomogeneous linear dynamic
equations and an example are given in Section 3. The conclusion is provided in the final Section.

2. Materials and Methods

We examine the terms and ideas related to the time scale of proportional calculations that are necessary as they
are used in the following section.

Definition 1 (Anderson & Ulness, 2015) Lety € [0,1]. If O is the unit operator and O? is the standard differential
operator, then the differential operator OY is referred to as a proportional derivative. It is expressly stated that the
derivative function h=~h(t) has a proportional operator O and that only

O%(t)=h(t) and Dh(t)=h'(t), )

exists for it.

Remark 2 (Anderson & Ulness, 2015) The essential principle of proportional derivative is created based on the
use of a proportional-derivative controller with a controller output v at time ¢t. This controller, v(t), uses the

d
v(t)=KkpE(t) + K4 EE(t)'
algorithm (Li et al., 2006) .

In this instance, E stands for the error between the state and process variables, while k,, and k, are the proportional
and derivative gains, respectively.

Definition 3 (Anderson & Ulness, 2015) Consider y € [0,1], ko, k;: [0,1] X R = R{ to be continuous functions
and that

yll)rgl_'_ Ko (YI t) = 0! yll)rgl_'_ K1 ()/l t) = 1:
lim k,(y,0) = 1, lim x,(y,t) =0, (2
Y1 Y1~

KO(V' t) * Oly € (011]1 Kl()/l t) * 0' Y € [0:1):

to be accurate. The differential operator O defined by
OYh(t)=r, (v, )h(t) + Ko (¥, ORI (D), 3

in here, h is the error, k, is a kind of proportional gain «,, k, is a type of derivative gain x,, and v=0Vh is the
controller output.

To obtain the fundamental conclusions for the next section, we need to keep in mind a few fundamental time scale
ideas. The time scale T belongs to R's standard topology and is a closed, non-empty subset of R. The forward and
backward jump operators , p: T — T for t € T have the following definitions:

o(®)=inf{l e T:l > t}, p()=sup{l e T:I < t}.

According to this definition, inf@ =supT and sup@=infT. If a(t) > t,p(t) <t, and p(t) <t < a(t) t are,
respectively, right-scattered, left-scattered, and isolated (discrete) points. In contrast, t is said to be right-dense if
t < supT and o (t)=t, left-dense if t > infT and p(t)=t, and t is the dense point if p(t)=t=0c(t). The graininess
function u: T - [0,00) is defined as u(t)=c(t) —t. If T has a maximum point m, then T*¥=T — {m};
otherwise, T*=T. If T has a left-sided limit at both its right-dense and left-scattered points, then the function
h: T — R is referred to as being rd-continuous, and C,,(T) is used to represent the collection of rd-continuous
functions h. Let t € T* and h: T — R be a function. If Ve > 0 and h?(t) is a real number such that

[h(a(®)) — h()] = K4 (D)o (t) = sl| < elo(®) —s|, Vs €U,
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for all s in a neighborhood U of point t, then h(t) is referred to as the delta derivative of h at point t. There is an
inverse derivative H, H4=h(t), for any continuous rd-function h. For s € T,

fsth(‘r) At = H(t), vt € T.

On the time scale, (Aulbach & Hilger, 1990; Agarwal et al., 2002; Bohner & Peterson, 2001, 2004; Bohner &
Svetlin, 2016; Hilger, 1990) offer thorough details.

We'll now give the proportional delta derivative of the function h: T — R of order y € [0, 1] at point t € T*.
Suppose that in the following expressions, kg, k; : [0, 1] X T — R¢ are continuous functions and satisfy conditions

Q).

Definition 4 (Segi Rahmat, 2019) Let h: T — R be a function, and t € T*. Ve > 0,and for every s in a
neighborhood U of point t, if there is a real number OYh(t), y € [0, 1], such that

|res (v, ORDO[a () = 51 + 1o (v, O[R(0 (1)) = h()] = OTR(D)[a () — 51| < e [o(t) = 5], @)
that number is known as the y —th order proportional delta derivative of f at point t.

The set of all proportional delta differentiable functions will be displayed with (Segi Rahmat, 2019)
N(T)={h:T > R : Forany t € T¥, D" h(t) exists and is finite}.

Theorem 5 (Segi Rahmat, 2019) Assuming that h: T —» R and t € T.
(i) If h € 2(T), then h is continuous at t.

(ii) If h is continuous at t, t is right-scattered, and

A h(o () — h(t)
h (t)_ (t) —t y
exists, then h € 2(T). In this instance,

OYh(t)=ro(y, t) h(t) + 11 (v, t) h(8). (5)
(iii) If t is right-dense, and

h(®)=h(s) h(s)
t—

lti =h'(t),

exists as a finite number, then f € 2(T), and so
OVh(t)=xo(y,t) K'(t) + K1 (¥, t) h(D). (6)

Lemma 6 (Segi Rahmat, 2019) The following characteristics are given if h, g: T — R are proportional delta
differentiable at the t € T* point:
(i) OY[yh+0g]=yOYh+06D%g, ally, 0 € R,

(i) OV[hgl=h°O¥g + gO"h — h?gK,(y,.);

(iii) ©Y [ ] Zygi] + (g + ga) K1, g9° # 0;

g°OYh— hDVg

(iv) DV[ ] Kl()/,.), gg° # 0.

Definition 7 (Segi Rahmat, 2019) Let y € [0, 1]. If the condition

p@Q-k1(y, Q) k
—_ = NZeT
+ P u@ #0, allg

holds, p: T — R is considered to be y-regressive.

The whole collection of rd-continuous and y-regressive functions on T is represented by R, =R, (T).

Definition 8 (Segi Rahmat, 2019) Lety € (0, 1] and p € R,,. Suppose that p/x,, K1/, delta integrable functions
on T. The proportional exponential function on T for operator O is defined by
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1 p(() x1 (¥, Q)
é,(t, s)=exp [ G Log 7@ 3 u(@ )A(]

t
5 _ _ k@9
éo(t, s)—exp[ o Log (1 D —u(0) AZ], s,t €T,

where Log is the basic logarithm function. For u(t)=0,
ey )= [[ (M0 ) ), e sy=ep |- [ 220]
Lemma 9 (Segi Rahmat, 2019) Lety € (0,1] and p € R,. For fixed s € T,
O[é, (., )] =p(®)éy (., 5),

and for the proportional exponential function é,,

vl [ r@é o)
) “a e AT =h(0).

Definition 10 (Segi Rahmat, 2019) Assume that h € C,4(R), y € (0, 1], and t, € T. According to (7),
J OYh(Q4,{=h(t) + céy(t, ty), Vt €T, c ER,

defines the indefinite proportional integral (anti derivative), and according to Lemma 9

45,

Tk (y 0

f,f h(Q)éy(t, a(Q)) 4,(= j %ﬁg@)) e Az

denotes the definite proportional integral of h on [a, b]y.

Lemma 11 (Segi Rahmat, 2019) Let y € (0, 1], h € C,4(R). Then,
o7 ([ h@Q&(t, 0(@) 4,3 = h().

Lemma 12 (Segi Rahmat, 2019) If h, g € 2(T),

(i) J, O [@)] éo(t, a(D) 4,7 =[R(Q) & (t, s @], -

(ii) ff h(Q) O [g(Q] & (b, 0(D)A,3=[n(Dg(D) &(b, a(c))]f:

~[7 9° @O [h@®] — 11 (7, DRI (b, 5(0) 4y

)

®)

©)

(10)

(11

Theorem 13 (Anderson & Ulness, 2015) Letp € C,.q(T) NR,, q € C,4(T), t, € T, and y, € R. The solution of

the initial value problem
OVy=p(®)y+q(t), y(to)=Yo,
is given by
t
V(=10 (¢, t0)*+ [, a(eg(a() )4y, t € T,

(p—k1)(uk1—ko)

where g = ko+u(p-kq)

Think about the linear proportional dynamic equation

(O")3y+a(t) (D) 2y+b(£) (D' y)+c(0)y=F (t), t € T¥’,

(12)

(13)
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where a, b, ¢ € C,.4(T).

Definition 14 (Anderson & Georgiev, 2020) The function y € C2,(T) providing the Eq. (13) is referred to as the
solution of the equation.

Theorem 15 (Anderson & Georgiev, 2020) Suppose that the solutions to Eq. (13) are y,, v,, and y5. The solution
to Eqg. (13) for p,q,r € Risthus py; + qy, + rys.

Definition 16 (Anderson & Georgiev, 2020) Any functions y,, y,,y; € C;(T) have a proportional Wronskian
with definition

Y1 V2 V3
WO yy)=| Oy D'y Dy, |, (14)
O")2y; (O)%y, (D")%y;

Definition 17 (Anderson & Georgiev, 2020) The solutions y,, y,, and y; of (13) are referred to as the fundamental
solution set for (13) if the condition

W (1, y2,¥3)(t) # 0,

is true for any t € T*,
3. Results and Discussions

In this section, the formula of variation of parameters for the third-order linear nonhomogeneous dynamic equation
is found, an example is given related to this method, and then a different expression of Wronskian is demonstrated
for the two solutions.

Theorem 18 Think about the linear proportional dynamic equation

(O)3y+a(t) (D) ?y+b () (D" y)+c(t)y=F (b), (15)
where a, b, ¢, f € C,4(T). Assume that the basic solutions to the associated homogeneous equation
(O")3y+a(t) (D) ?y+b (£) (D" y)+c(t)y=0, (16)

are y;, v, and y5. Eq. (15) in this situation has a solution of

y(®)=c1y1 (1) +cy,(t) + c3y5(t)

t
5 ¥3 (5)(0"y3)9(5)=¥5 ($)(0"y2)7(s)
* <e’f1 (& to)+ ftOF ) W01 y25:)°(S) e"(a(s)’t)"”s> (0

t
5 _ ¥7(5)(0"y3)° (5)=¥§ ()01 (s) 4
+ <e"1 (& t) to F(s) W1, ¥2,53))°(5) €o(a(s), t)AV’tS> y2(5)

t
N o (Dy )a‘ A0 (Dy )a‘ N
+<ex1(t, o)+ f F(s) o e e “)eo(a(s).t)Ay,ts>y3(t). teT,
. v

where c;, c,, and ¢ are constants.

Proof Let y;,y,, y; be the fundamental set of solutions to the homogeneous Eqg. (16). Investigate the version
y(®)=p(O)y1(£)+q &)y, () +7(t)y3(8), (18)

of the solution to Eq. (15).

O'y(O)=(O"p)yf +p(O¥y1) — k1py? +(0VqQ)y7 +q(O"y,)

—K1qys +(O'r)ys +r(OVy3) — Kky7yg
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=p(6)(O"y1)+q () (DY y,)+7 () (DVy3), (19)
is deduced from the proportional derivative's product rule. Here, it is assumed that
(O"p)y? +(OY )y +(O'1)y3d =K1py7i +K1qy3 +17Y3 - (20)
Similarly, it is obtained
(O 2y=p((D")2y,)+(D'P)(O"y1)? —k1p (DY y1)7+q ((DV)?y,) + (D7 q)(DVy,)’

—11q(DVy,)7 + r((D")2y3)+(D'r)(D"y3)° — k7 (D y3)°

=p((9")2y1)+q((D")?y,)+r((D")?y3), (21)
by the assumption
(OVp) (O y1)7+(0¥ q) (OF y,) 7 +(OV1) (O¥ y3) =K1 p (D y1) 7 +K1q (O y,) 7 +1,7 (DY y3) . (22)

The third order proportional derivative of is

(O")y = O (p(D")?y;) + OV (q(D")?y,) + O (r(D")%y3)

= p((O")*y)+(O"P)((D)?¥1)7 — k1 p((DV)2y1) 7 +q (DY) y)+(DY ) ((97)?y,)”

—11q((D")%y,)7 + 1((D")%y3) + (') (D) ?y3)7 — Ky ((DV)?y3)°. (23)

If the formulae (18), (19), (21), and (23) are inserted in the Eq. (15), accounting for the assumptions of (20), and
(22), the equation

(O")2y+a(t)(D)?y+b () (DY y)+c(£)y = p(O(DY)y,+a(t) (D) 2y, +b () (D" y1)+c ()]
+q(O)[(O")y,+a(t) (D)2 y,+b () (D" y2)+c (1) y,]
+r(O)[(O7)*ys+a(t) (D) ?ys+b(£) (D ys)+c (t)ys]
+HO'P)((D)?y1)7 — k1p (D)) + (D) ((D")%y,)7
—k1q((D)?y2)7 + (D) (D) ?y3)7 — Ky ((D)?y5)7
= F(),

is discovered. We have recently found the system

©"p)y? + (OYQ)y7 + (O'1)ys = 1py! +Kk1qy7 +K7y3,

©O"p)(©Oy1)? + (D) (D'y,)? + (D) (DVy3)? = 1p(DVy1)? + k1 (DVy,)7 + 137 (DVy3)7,

©O"P) (D)) + (O P((D)?y2)? + (D) ((DV)?y3)7 =

= 1k,p((O")*1)7 + k1 ((D")?y,)° + kg (D) ?y3)7 + F(8).
We derive

y: (£)(OVy3)7 —y3 (£)(DVy,)?
W (1, ¥2,¥3))°(t)

_ YT (O)(Oy3)7 — ys (O (Oy1)?

0740 = (@ 09O = FO =475 = 550

| Y2 (©)(©77,)7 — y5 (D(Dy,)°
(PO = le OrO+H FO™ 000, v ©

O'p(t) = k1 (a, O)p(O)+F (1)

. teTK,
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from the previous system.

t a v o a Y o
t)=é. (tt F(s)22 (8)(©Yy3)7(s)—y5 (5)(DVy2)?(s) )4 )
O R O e GO

t g
_ _ VIO y5)7 (5)-y§ (5) (D" y1)(s) 5
| 0T8N o F) W1, y255)° () €o(a(s), t)4y,s,

t g
_ ¥ ($)(©Yy2)? (5)~y3 (DO y)I(s) K2
() =&t to) + fm Fs) W1, 7273)°(5) Go(0 () ays, LETT,

functions are identified using the formula (12). As a result,

y(©)=c1y, (®)+c ¥, (D) +c3y3(t)

t
~ Y3 (8)(0"y3)°(5)—y5 (8)(0"¥2)(s)
+ <eK1 (tl tO) + J;O F(S) (W(YL J’z.J’3))U(S) eO (O-(S)' t)A]/,tS> yl (t)

t
~ _ Y1 (8)(©0"y3)°(5)—y3 (5)(0"y1)°(s)
+ (eKl (t' tO) t F(S) (W(J’p yZ.Y3))J(S) eO (O-(S)' t)A]/,tS> y2 (t)

t

_ 7(5)(077,)7(9)-yS () (O ¥)(S) 5 2

+<e"1 (£, o) +f F(9)== (:;(ylsyz ii»s%s) = e"(a(s)’t)ﬂy‘t5> ys(t) e €T,
i V2

is the Eq. (15)'s general solution.
Theorem 19 While y; and y, are the solutions of
Oy + a()O"y + b(t)y =0, t € T,

where a, b € C,,(T),

W (y.,y,) = [(1 - HK_’:) (1 - E) + %] Wy, ¥2), (24)

Ko Ko
is provided.
Proof Given that

Y1 V2
Wy, y2)= |Dyy1 Dyy2| =y, 0%y, — y,0%y,

according to the Wronskian definition for two solutions,

yi y3
Wy, y2)= |(Dyy1)a (O¥y,)°

and

=7 (0"y2)? — ¥,7(DVy1)?,

14 -
po= BT ARR p 4 2 (OVh — kyh),
Ko Ko

it is derived that
u u
W (y1, y2)=y:° (Dyyz + P ((DY)ZYZ - Klgyh)) -y’ (Dyyl + P ((Dy)z)ﬁ - K1DYY1)>
0 0

ui u
= (1 - K_1> 0170y, —¥,°0%yy) + PN 17 (O) 2y, — y,7 (DV)yy).
) 0

Given that
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7 v

— yf yZU | _ Kq(Ko—pK1) W(y y )
O'y; Oy, (OM)2y,  (O")?y, vz

Ko

= (w) W1, ¥2), O'W (y1, y2)

Ko

([33], theorem 7.1.8, 7.1.10) in this situation,

2 _
Wy, y,) = (1 - #K_};l) Wy, y2) + K%(DVW()H'Yz) + mx(;io#mw(}’l:h))-

is the outcome. On the other hand, according to ([33], theorem 7.1.12) since

a(ky — ury) (kg — ury) bu
DYW(.VI!.VZ) = _< 2 L + 10 = W(}’p}’z),
Ko Ko Ko
the eventual result is
(o — i) (g — prey — ap) + bu?
WO (v, y2)= [ - e W1, ys)
(1 = ten) (1 — e ) | bt
_[(1 KO)(1 Ko K0)+ Kg]W(}’p}’z)-

Example 20 Assume that T =7, x,(y,t) = (1 —Y)t?,k,(y,t) = yt>A ", y € (0, 1], t € T. Take into
account the following differential equation

(o)
Firstly, we will find the solution of the corresponding homogeneous equation of Eq. (25)
()

by using the method in Anderson & Georgiev (2020). The auxiliary formula for (26) is
AB—-1=0, (27)

3 1
y — D3y=2t. (25)

3 1
y - Dgyzol (26)

and from here the roots are easily foundas 4, = 0,4, = —1,4; = 1.

We may reformat Eqg. (26) as follows:

1 1 1
o3 (05 +1) (05 -1) =0. (28)
Taking
1 1
(os+1)(05-1)y =y, (29)
we form
1
D§y1 = O,
and from theorem 13, the solution of this equation is
y1(t) = c1 & (¢, to), (30)
where c; is a constant. Now we get
1
(D5 -1)y =y, (31)
and from Eq. (28) we form
1
(05 +1)y, =0 (), (32)

or

1
D3y, = =y, + y1(0),
and using theorem (13), we find its solution as
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t

y,(H)=c,é_, (¢, t0)+f y1(0)ég, (r + L), te T, (33)
to 3
(C1-2e)2es-Les) : -
where g, = % and c, is a constant. From Eq. (31) considering the formula (33) and theorem (13)
§t3—1—§t3
it can be easily obtained that
t
y()=c3é,(t, t0)+f y2(D)é,, (T + 1,0)d1T,  t €T, (34)
3

to

R N . . . . .
where g, = % and c; is a constant. If we substitute the solutions (30) and (33) in the solution (34),
~t3+1-2t3
3 3
we obtain the solution of the homogeneous Eq. (26) as

t rs t
y(t)=c1f f (1, t0)€y, (T + 1,t)é,,(s + 1,t)A17415 + ¢, f €_1(1,t0)éy,(s + L,)A1T + c3€,(2, to).
to Yto 3 3 t 3

0

Thus if we compare the formula (17), we discovered that

t rs
v, () = f f éy(t, to)égl (t+ 1,t)ég2 (s + 1,t)A17415,
to /to 3 3
t

7.0 = [ €100, + 1041
to 3
y3(t) = &.(t, to).

So, it is possible to find the general solution of the given problem by while keeping in mind that these formulae
and F(t) = 2tin formula (17):

y(®)=c1y1 (1) +c,(t) + c3y5(t)
t 1 1

V2(s+1)03y3(s+1)=y3(s+1)D3y,(s+1)
2s W (1, 72.3)(s+1) Go(s + 10415 |y: (D)

+ ézé(t, to)+
3 to

‘ 1 1
5 o(t t) — g V(ST DD3Y3(s+1)—ys(s+1)D3ya (s+1) 5 1.4 ¢
| &z k) S W1, 723)(+D) fo(s +1,041,5 |72(0)

to

t

1 1
B IR P ACEN o ACR N SN A Y Dy s |y (0.
243 3

W1, ¥2,¥3)(s+1)
to

4. Conclusion

The variation of parameters was examined using the proportional derivative as a general example of a
conformable derivative for the third-order linear nonhomogeneous dynamic equation, and an example was given
on time scales with the special choice of the functions x,(y, t) and k,(y, t).
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