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Abstract 

 

The differentiation and integration of an integer order are known as fractional calculus. It is possible to think of 

the proportional derivative as a generalization of a congruent fractional derivative, which is one of the types of 

fractional calculus. In this article, utilizing the proportional derivative and its characteristics on the time scale, the 

method of variation of parameters for the third-order linear nonhomogeneous differential equations is given. Then, 

an example is provided to illustrate how to apply the provided approach.  
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1. Introduction 
 

The conformable derivative is a unique mathematical operator that expands the idea of differentiation to non-

integer orders (Katugampola, 2014; Khalil et al., 2014; Abdeljewad, 2015). The conformable derivative offers a 

more understandable and natural framework for dealing with non-integer differentiation than conventional 

fractional calculus operators like the Riemann-Liouville or Caputo derivatives. Due to its capacity for modeling 

complex events showing fractal or anomalous behavior, the idea of non-integer differentiation has received a great 

deal of interest (Ortigueira & Machado, 2015). For the study of dynamic equations that incorporate both continuous 

and discrete time periods, the conformable derivative on time scales offers a coherent framework. Time scales 

expand the idea of real numbers to encompass discrete and continuous time domains, making it possible to 

represent a wider range of equations in greater detail. The conformable derivative depends on forward and 

backward difference quotients instead of integrals, which are necessary for fractional derivatives, making it easier 

to obtain and compute. 

 

The conformable derivative on time scales has a variety of advantageous characteristics, such as linearity, the 

chain rule, and compatibility with conventional differentiation operators on real numbers. On time scales, physics, 

engineering, biology, and finance are just a few of the disciplines that the conformable derivative is used in. The 

conformable derivative on time scales has received a lot of interest recently from the scientific community 

(Benkhettou et al., 2015; Benkhettou et al., 2016; Gulsen et al., 2017; Gülşen et al., 2018; Yilmaz et al., 2022). 

 

Even if the more inclusive definition of the proportional derivative given in Definition 1 below meets some of the 

characteristics of the fractional derivative, it is still best to consider the proportional derivative independently, 

separate from the theory of fractional derivatives. As a result, the proportional derivative reported in Anderson & 

Ulness (2015) was renamed a  conformable derivative, and a prospective definition for the proportional derivative 

on a time scale was found in Segi Rahmat (2019). A specific case of the proportional derivative is the conformable 

derivative. When the order is equal to 1, the proportional derivative of a function defined on the time scale becomes 

the Hilger derivative. 

 

Non-homogeneous linear differential equations can be solved using the variation of parameters approach. When 

used with third-order differential equations on time scales, it entails locating a specific solution under the 

presumption that the coefficients of the solution are functions of the independent variable. This approach offers a 

potent tool for resolving intricate differential equations that appear in a variety of scientific and engineering 

disciplines. For the second-order nonhomogeneous dynamic equation via the proportional derivative, the variation 

of parameters is given in Anderson & Georgiev (2020), but for the third-order nonhomogeneous dynamic equation 

via the proportional derivative, it has not been studied before, according to our research.  
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In this paper, we aim to explore the theory and applications of the variation of parameters for the third-order 

nonhomogeneous dynamic equation via the proportional derivative. Basic ideas and notations relating to time 

scales and proportional derivatives on time scales are presented in Section 2. The technique of variation of 

parameters produced for solving the third-order proportional derivative nonhomogeneous linear dynamic 

equations and an example are given in Section 3. The conclusion is provided in the final Section. 

 

2. Materials and Methods 
 

We examine the terms and ideas related to the time scale of proportional calculations that are necessary as they 

are used in the following section. 

Definition 1 (Anderson & Ulness, 2015) Let 𝛾 ∈ [0,1]. If  𝔒0 is the unit operator and 𝔒1 is the standard differential 

operator, then the differential operator 𝔒𝛾 is referred to as a proportional derivative. It is expressly stated that the 

derivative function ℎ=ℎ(𝑡) has a proportional operator 𝔒𝛾 and that only  

                                         𝔒0ℎ(𝑡)=ℎ(𝑡)   and   𝔒1ℎ(𝑡)=ℎ′(𝑡),                                                                              (1) 

exists for it. 

 

Remark 2 (Anderson & Ulness, 2015) The essential principle of proportional derivative is created based on the 

use of a proportional-derivative controller with a controller output 𝑣 at time 𝑡. This controller, 𝑣(𝑡), uses the  

𝑣(𝑡)=𝜅𝑝𝐸(𝑡) + 𝜅𝑑
𝑑

𝑑𝑡
𝐸(𝑡), 

algorithm (Li et al., 2006) .  

 

In this instance, 𝐸 stands for the error between the state and process variables, while 𝜅𝑝 and 𝜅𝑑 are the proportional 

and derivative gains, respectively. 

 

Definition 3 (Anderson &  Ulness, 2015) Consider 𝛾 ∈ [0,1],  𝜅0, 𝜅1: [0,1] × ℝ  → ℝ0
+  to be continuous functions 

and that  

        {

lim
𝜸→0+

 𝜅0(𝛾, 𝑡) = 0,        lim
𝜸→0+

 𝜅1(𝛾, 𝑡) = 1,

lim
𝜸→1−

 𝜅0(𝛾, 𝑡) = 1,          lim
𝜸→1−

 𝜅1(𝛾, 𝑡) = 0,

𝜅0(𝛾, 𝑡) ≠ 0, 𝛾 ∈ (0,1],   𝜅1(𝛾,  𝑡) ≠ 0, 𝛾 ∈ [0,1),

                                                     (2) 

to be accurate. The differential operator 𝔒𝜸 defined by  

                                      𝔒𝜸ℎ(𝑡)=𝜅1(𝛾, 𝑡)ℎ(𝑡) + 𝜅0(𝛾, 𝑡)ℎ
𝛥(𝑡),                                                                   (3) 

in here, ℎ is the error, 𝜅1 is a kind of proportional gain 𝜅𝑝, 𝜅0 is a type of derivative gain 𝜅𝑑, and 𝑣=𝔒𝜸ℎ is the 

controller output. 

 

To obtain the fundamental conclusions for the next section, we need to keep in mind a few fundamental time scale 

ideas. The time scale 𝕋 belongs to ℝ's standard topology and is a closed, non-empty subset of ℝ. The forward and 

backward jump operators 𝜎 , 𝜌: 𝕋 → 𝕋 for 𝑡 ∈ 𝕋 have the following definitions:  

             𝜎(𝑡)=inf {𝑙 ∈ 𝕋 : 𝑙 > 𝑡},               𝜌(𝑡)=sup {𝑙 ∈ 𝕋 : 𝑙 < 𝑡}. 

According to this definition, inf∅ =sup𝕋 and sup∅=inf𝕋. If 𝜎(𝑡) > 𝑡, 𝜌(𝑡) < 𝑡, and  𝜌(𝑡) < 𝑡 < 𝜎(𝑡) 𝑡 are, 

respectively, right-scattered, left-scattered, and isolated (discrete) points. In contrast, 𝑡 is said to be right-dense if 

𝑡 < sup𝕋 and 𝜎(𝑡)=𝑡, left-dense if 𝑡 > inf𝕋 and ρ(𝑡)=𝑡, and 𝑡 is the dense point if ρ(𝑡)=𝑡=𝜎(𝑡). The graininess 

function 𝜇: 𝕋 → [0, ∞) is defined as 𝜇(𝑡)=𝜎(𝑡) − 𝑡. If 𝕋 has a maximum point 𝑚, then 𝕋𝑘=𝕋 − {𝑚}; 
otherwise, 𝕋𝑘=𝕋. If 𝕋 has a left-sided limit at both its right-dense and left-scattered points, then the function 

ℎ: 𝕋 → ℝ is referred to as being rd-continuous, and 𝐶𝑟𝑑(𝕋) is used to represent the collection of rd-continuous 

functions ℎ. Let 𝑡 ∈ 𝕋𝑘 and ℎ : 𝕋 → ℝ be a function. If ∀𝜀 > 0 and ℎ𝛥(𝑡) is a real number such that  

         |[ℎ(𝜎(𝑡)) − ℎ(𝑠)] − ℎ𝛥(𝑡)[𝜎(𝑡) − 𝑠]| ≤ 𝜀 |𝜎(𝑡) − 𝑠|, ∀𝑠 ∈ 𝑈, 
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for all 𝑠 in a neighborhood 𝑈 of point 𝑡, then ℎ𝛥(𝑡) is referred to as the delta derivative of ℎ at point 𝑡. There is an 

inverse derivative 𝐻, 𝐻𝛥=h(𝑡), for any continuous rd-function h. For 𝑠 ∈ 𝕋,  

 ∫ ℎ(𝜏) 𝛥𝜏
𝑡

𝑠
= 𝐻(𝑡), ∀𝑡 ∈ 𝕋. 

 

On the time scale, (Aulbach & Hilger, 1990; Agarwal et al., 2002; Bohner & Peterson, 2001, 2004; Bohner & 

Svetlin, 2016; Hilger, 1990) offer thorough details. 

 

We'll now give the proportional delta derivative of the function ℎ : 𝕋 → ℝ of order 𝛾 ∈ [0, 1] at point 𝑡 ∈ 𝕋𝑘. 

Suppose that in the following expressions, 𝜅0, 𝜅1 : [0, 1] × 𝕋 → ℝ0
+ are continuous functions and satisfy conditions 

(2). 

 

Definition 4 (Segi Rahmat, 2019) Let ℎ : 𝕋 → ℝ be a function, and 𝑡 ∈ 𝕋𝑘.  ∀𝜀 > 0, and for every 𝑠 in a 

neighborhood 𝑈 of point 𝑡, if there is a real number 𝔒𝜸ℎ(𝑡),  𝛾 ∈ [0, 1],  such that  

|𝜅1(𝛾, 𝑡)ℎ(𝑡)[𝜎(𝑡) − 𝑠] + 𝜅0(𝛾, 𝑡)[ℎ(𝜎(𝑡)) − ℎ(𝑠)] − 𝔒
𝛾ℎ(𝑡)[𝜎(𝑡) − 𝑠 ]| ≤ 𝜀 [𝜎(𝑡) − 𝑠],                              (4) 

that number is known as the 𝛾 −th order proportional delta derivative of 𝑓 at point 𝑡. 

The set of all proportional delta differentiable functions will be displayed with (Segi Rahmat, 2019) 

 𝛺(𝕋)={ ℎ : 𝕋 → ℝ  :  For any 𝑡 ∈ 𝕋𝑘 , 𝔒𝛾ℎ(𝑡) exists and is finite}. 

 
Theorem 5 (Segi Rahmat, 2019) Assuming that ℎ : 𝕋 → ℝ  and 𝑡 ∈ 𝕋𝑘.  

(i)  If ℎ ∈ 𝛺(𝕋), then ℎ is continuous at 𝑡.    

(ii) If ℎ is continuous at 𝑡, 𝑡 is right-scattered, and  

          ℎ𝛥(𝑡)=
ℎ(𝜎(𝑡)) − ℎ(𝑡)

𝜎(𝑡) − 𝑡
, 

exists, then ℎ ∈ 𝛺(𝕋). In this instance, 

𝔒𝛾ℎ(𝑡)=𝜅0(𝛾, 𝑡) ℎ
𝛥(𝑡) + 𝜅1(𝛾, 𝑡) ℎ(𝑡).                                       (5) 

(iii) If 𝑡 is right-dense, and         

                        lim
𝑡→𝑠

ℎ(𝑡)−ℎ(𝑠)

𝑡−𝑠
=ℎ′(𝑡), 

exists as a finite number, then 𝑓 ∈ 𝛺(𝕋), and so 

                      𝔒𝛾ℎ(𝑡)=𝜅0(𝛾, 𝑡) ℎ′(𝑡) + 𝜅1(𝛾, 𝑡) ℎ(𝑡).                                                                                           (6)    

                      

Lemma 6 (Segi Rahmat, 2019) The following characteristics are given if ℎ, 𝑔 : 𝕋 → ℝ are proportional delta 

differentiable at the 𝑡 ∈ 𝕋𝑘 point:  

 (i)   𝔒𝛾[γℎ + 𝜃𝑔]=γ𝔒𝛾ℎ + 𝜃𝔒𝛾𝑔,  all γ, 𝜃 ∈ ℝ; 

(ii)  𝔒𝛾[ℎ𝑔]= ℎ𝜎𝔒𝛾𝑔 + 𝑔𝔒𝛾h − ℎ𝜎𝑔𝜅1(𝛾, . ); 

(iii) 𝔒𝛾 [
1

𝑔
]= −

𝔒𝛾[𝑔]

𝑔.𝑔𝜎
+ (

1

𝑔
+

1

𝑔𝜎
) 𝜅1,    𝑔𝑔

𝜎 ≠ 0; 

(iv) 𝔒𝛾 [
ℎ

𝑔
]=

𝑔𝜎𝔒𝛾h− ℎ𝔒𝛾𝑔

𝑔.𝑔𝜎
+

ℎ𝜎

𝑔𝜎
𝜅1(𝛾, . ),     𝑔𝑔

𝜎 ≠ 0. 

 

Definition 7 (Segi Rahmat, 2019) Let 𝛾 ∈ [0, 1]. If the condition 

            1 +
𝑝(ζ) − 𝜅1(𝛾, ζ)

𝜅0(𝛾, ζ)
𝜇(ζ) ≠ 0,   all ζ ∈ 𝕋𝑘, 

holds, 𝑝: 𝕋 → ℝ is considered to be 𝛾-regressive. 

The whole collection of rd-continuous and 𝛾-regressive functions on 𝕋 is represented by ℛ𝛾=ℛ𝛾(𝕋). 

 

Definition 8 (Segi Rahmat, 2019) Let 𝛾 ∈ (0, 1] and 𝑝 ∈ ℛ𝛾. Suppose that 𝑝 𝜅0,⁄   𝜅1 𝜅0⁄  delta integrable functions 

on 𝕋. The proportional exponential function on 𝕋 for operator 𝔒𝛾 is defined by  
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�̃�𝑝(𝑡, 𝑠)=exp [∫
1

𝜇(ζ)
𝐿𝑜𝑔 (1 +

𝑝(ζ) − 𝜅1(𝛾, ζ)

𝜅0(𝛾, ζ)
𝜇(ζ) )

𝑡

𝑠

𝛥ζ],                                                                                              (7) 

�̃�0(𝑡, 𝑠)=exp [∫
1

𝜇(ζ)
𝐿𝑜𝑔 (1 −

 𝜅1(𝛾, ζ)

𝜅0(𝛾, ζ)
𝜇(ζ))

𝑡

𝑠

𝛥ζ],  𝑠, 𝑡 ∈ 𝕋,  

where Log is the basic logarithm function. For 𝜇(𝑡)=0,      

  �̃�𝑝(𝑡, 𝑠)=exp [∫ ( 
𝑝(ζ) − 𝜅1(𝛾, ζ)

𝜅0(𝛾, ζ)
 )

𝑡

𝑠

𝛥ζ],  �̃�0(𝑡, 𝑠)=exp [−∫   
 𝜅1(𝛾, ζ)

𝜅0(𝛾, ζ)

𝑡

𝑠

𝛥ζ].                                                            (8) 

 

Lemma 9 (Segi Rahmat, 2019) Let 𝛾 ∈ (0, 1]  and 𝑝 ∈ ℛ𝛾. For fixed 𝑠 ∈ 𝕋, 

𝔒𝛾[�̃�𝑝(. , 𝑠)] = 𝑝(𝑡)�̃�𝑝(. , 𝑠), 

and for the  proportional exponential function �̃�0, 

 𝔒𝛾 [ ∫
 ℎ(ζ)�̃�0(𝑡, 𝜎(ζ))

𝜅0(𝛾, ζ)

𝑡

𝑎

 𝛥ζ]=ℎ(𝑡).                                                                                                                     (9) 

 

Definition 10 (Segi Rahmat, 2019) Assume that ℎ ∈ 𝐶𝑟𝑑(ℝ), 𝛾 ∈ (0, 1],  and 𝑡0 ∈ 𝕋. According to (7), 

 ∫  𝔒𝛾ℎ(ζ)𝛥𝛾ζ = ℎ(𝑡) + 𝑐�̃�0(𝑡, 𝑡0), ∀𝑡 ∈ 𝕋 , 𝑐 ∈ ℝ, 

defines the indefinite proportional integral (anti derivative), and according to Lemma 9 

 ∫  ℎ(ζ)�̃�0(𝑡, 𝜎(ζ)) 𝛥𝛾ζ=
𝑡

𝑎
∫  

ℎ(ζ)�̃�0(𝑡, 𝜎(ζ))

𝜅0(𝜸,ζ)
 𝛥ζ,

𝑡

𝑎

 𝛥𝛾ζ=
1

𝜅0(𝛾, ζ)
 𝛥ζ,                                                  (10) 

denotes the definite proportional integral of ℎ on [𝑎, 𝑏]𝕋. 

 

Lemma 11 (Segi Rahmat, 2019) Let 𝛾 ∈ (0, 1], ℎ ∈ 𝐶𝑟𝑑(ℝ). Then, 

 𝔒𝛾 [∫  ℎ(ζ)�̃�0(𝑡, 𝜎(ζ)) 𝛥𝛾ζ
𝑡

𝑎
] = ℎ(𝑡).                                      (11) 

 

Lemma 12 (Segi Rahmat, 2019)  If ℎ, 𝑔 ∈ 𝛺(𝕋),  

(i)  ∫  𝔒𝛾  [ℎ(ζ)]
𝑡

𝑎
 �̃�0(𝑡, 𝜎(ζ)) 𝛥𝛾ζ = [ℎ(ζ) �̃�0(𝑡, 𝜎(ζ))]ζ=𝑎

𝑡  . 

(ii)  ∫ ℎ(ζ) 𝔒𝛾[𝑔(ζ)] �̃�0(𝑏, 𝜎(ζ))𝛥𝛾ζ
𝑏

𝑎
= [ℎ(ζ)𝑔(ζ) �̃�0(𝑏, 𝜎(ζ))]ζ=𝑎

𝑏
 

                                                  −∫  𝑔𝜎(ζ){𝔒𝛾[ℎ(ζ)] − 𝜅1(𝛾, ζ)ℎ(ζ)}�̃�0(𝑏, 𝜎(ζ)) 𝛥𝛾ζ
𝑏

𝑎
. 

 

Theorem 13 (Anderson & Ulness, 2015) Let 𝑝 ∈ 𝐶𝑟𝑑(𝕋) ∩ ℛ𝛾 , 𝑞 ∈ 𝐶𝑟𝑑(𝕋), 𝑡0 ∈ 𝕋, and 𝑦0 ∈ ℝ. The solution of 

the initial value problem  

 𝔒𝛾𝑦=𝑝(𝑡)𝑦+𝑞(𝑡),   𝑦(𝑡0)=𝑦0 , 

is given by 

 𝑦(𝑡)=𝑦0 �̃�𝑝(𝑡, 𝑡0)+∫ 𝑞(𝜏)�̃�𝑔(𝜎(𝜏),𝑡)𝛥𝛾𝜏 ,
𝑡

𝑡0
 𝑡 ∈ 𝕋𝑘,                                                     (12) 

where 𝑔 =
(𝑝−𝑘1)(𝜇𝑘1−𝑘0)

𝑘0+𝜇(𝑝−𝑘1)
.  

 

Think about the linear proportional dynamic equation 

                                           (𝔒𝛾)3𝑦+𝑎(𝑡)(𝔒𝛾)2𝑦+𝑏(𝑡)(𝔒𝛾𝑦)+𝑐(𝑡)𝑦=𝐹(𝑡),  𝑡 ∈ 𝕋𝑘
2
,                                       (13) 



GULSEN et al.                                                        Bartın University International Journal of Natural and Applied Sciences  

JONAS, 2023, 6(2): 135-144 
 

 139 

 

where 𝑎, 𝑏, 𝑐 ∈ 𝐶𝑟𝑑(𝕋).    

Definition 14 (Anderson & Georgiev, 2020) The function 𝑦 ∈ 𝐶𝑟𝑑
2 (𝕋) providing the Eq. (13) is referred to as the 

solution of the equation.  

 

Theorem 15 (Anderson & Georgiev, 2020) Suppose that the solutions to Eq. (13) are 𝑦1, 𝑦2 , and 𝑦3. The solution 

to Eq. (13) for  𝑝, 𝑞, 𝑟 ∈ ℝ is thus 𝑝𝑦1 + 𝑞𝑦2 + 𝑟𝑦3. 

 

Definition 16 (Anderson & Georgiev, 2020) Any functions 𝑦1 , 𝑦2, 𝑦3 ∈ 𝐶𝑟𝑑
1 (𝕋) have a proportional Wronskian 

with definition  

                                               𝑊(𝑦1 , 𝑦2, 𝑦3)= |

𝑦1 𝑦2 𝑦3
𝔒𝛾𝑦1 𝔒𝛾𝑦2 𝔒𝛾𝑦2
(𝔒𝛾)2𝑦1 (𝔒𝛾)2𝑦2 (𝔒𝛾)2𝑦3

|.                                                (14) 

 

Definition 17 (Anderson & Georgiev, 2020) The solutions 𝑦1, 𝑦2 , and 𝑦3 of (13) are referred to as the fundamental 

solution set for (13) if the condition 

𝑊(𝑦1, 𝑦2, 𝑦3)(𝑡) ≠ 0, 

is true for any 𝑡 ∈ 𝕋𝑘 .    
 

3. Results and Discussions 
 

In this section, the formula of variation of parameters for the third-order linear nonhomogeneous dynamic equation 

is found, an example is given related to this method, and then a different expression of Wronskian is demonstrated 

for the two solutions. 

 
Theorem 18 Think about the linear proportional dynamic equation 

                                         (𝔒𝛾)3𝑦+𝑎(𝑡)(𝔒𝛾)2𝑦+𝑏(𝑡)(𝔒𝛾𝑦)+𝑐(𝑡)𝑦=𝐹(𝑡),                                                        (15) 

where 𝑎, 𝑏, 𝑐, 𝑓 ∈ 𝐶𝑟𝑑(𝕋). Assume that the basic solutions to the associated homogeneous equation 

                                                     (𝔒𝛾)3𝑦+𝑎(𝑡)(𝔒𝛾)2𝑦+𝑏(𝑡)(𝔒𝛾𝑦)+𝑐(𝑡)𝑦=0,                                                  (16) 

are 𝑦1, 𝑦2 and 𝑦3. Eq. (15) in this situation has a solution of  

𝑦(𝑡)=𝑐1𝑦1(𝑡)+𝑐2𝑦2(𝑡) + 𝑐3𝑦3(𝑡) 

       +(�̃�𝜅1(𝑡, 𝑡0)+∫ 𝐹(𝑠)
𝑦2
𝜎(𝑠)(𝔒𝛾𝑦3)

𝜎(𝑠)−𝑦3
𝜎(𝑠)(𝔒𝛾𝑦2)

𝜎(𝑠)

(𝑊(𝑦1, 𝑦2,𝑦3))
𝜎(𝑠)

�̃�0(𝜎(𝑠), 𝑡)𝛥𝛾,𝑡𝑠
𝑡

𝑡0

)𝑦1(𝑡) 

       +(�̃�𝜅1(𝑡, 𝑡0) − ∫ 𝐹(𝑠)
𝑦1
𝜎(𝑠)(𝔒𝛾𝑦3)

𝜎(𝑠)−𝑦3
𝜎(𝑠)(𝔒𝛾𝑦1)

𝜎(𝑠)

(𝑊(𝑦1, 𝑦2,𝑦3))
𝜎(𝑠)

�̃�0(𝜎(𝑠), 𝑡)𝛥𝛾,𝑡𝑠
𝑡

𝑡0

)𝑦2(𝑡) 

       +(�̃�𝜅1(𝑡, 𝑡0)+∫ 𝐹(𝑠)
𝑦1
𝜎(𝑠)(𝔒𝛾𝑦2)

𝜎(𝑠)−𝑦2
𝜎(𝑠)(𝔒𝛾𝑦1)

𝜎(𝑠)

(𝑊(𝑦1, 𝑦2,𝑦3))
𝜎(𝑠)

�̃�0(𝜎(𝑠), 𝑡)𝛥𝛾,𝑡𝑠
𝑡

𝑡0

)𝑦3(𝑡),       𝑡 ∈ 𝕋
𝑘2 ,          (17) 

where 𝑐1, 𝑐2, and 𝑐3 are constants. 

Proof  Let 𝑦1, 𝑦2, 𝑦3 be the fundamental set of solutions to the homogeneous Eq. (16). Investigate the version 

     𝑦(𝑡)=𝑝(𝑡)𝑦1(𝑡)+𝑞(𝑡)𝑦2(𝑡)+𝑟(𝑡)𝑦3(𝑡),                                                                                                                   (18) 

of the solution to Eq. (15).  

𝔒𝛾𝑦(𝑡)=(𝔒𝛾𝑝)𝑦1
𝜎+𝑝(𝔒𝛾𝑦1) − 𝜅1𝑝𝑦1

𝜎+(𝔒𝛾𝑞)𝑦2
𝜎+𝑞(𝔒𝛾𝑦2) 

             −𝜅1𝑞𝑦2
𝜎+(𝔒𝛾𝑟)𝑦3

𝜎+𝑟(𝔒𝛾𝑦3) − 𝜅1𝑟𝑦3
𝜎  
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             =𝑝(𝑡)(𝔒𝛾𝑦1)+𝑞(𝑡)(𝔒
𝛾𝑦2)+𝑟(𝑡)(𝔒

𝛾𝑦3),                                                                                                        (19) 

is deduced from the proportional derivative's product rule. Here, it is assumed that  

(𝔒𝛾𝑝)𝑦1
𝜎+(𝔒𝛾𝑞)𝑦2

𝜎+(𝔒𝛾𝑟)𝑦3
𝜎=𝜅1𝑝𝑦1

𝜎+𝜅1𝑞𝑦2
𝜎+𝜅1𝑟𝑦3

𝜎.                                                                                             (20) 

Similarly, it is obtained 

(𝔒𝛾)2𝑦=𝑝((𝔒𝛾)2𝑦1)+(𝔒
𝛾𝑝)(𝔒𝛾𝑦1)

𝜎−𝜅1𝑝(𝔒
𝛾𝑦1)

𝜎+𝑞((𝔒𝛾)2𝑦2) +  (𝔒𝛾𝑞)(𝔒𝛾𝑦2)
𝜎 

             −𝜅1𝑞(𝔒
𝛾𝑦2)

𝜎 + 𝑟((𝔒𝛾)2𝑦3)+(𝔒
𝛾𝑟)(𝔒𝛾𝑦3)

𝜎 − 𝜅1𝑟(𝔒
𝛾𝑦3)

𝜎  

             =𝑝((𝔒𝛾)2𝑦1)+𝑞((𝔒
𝛾)2𝑦2)+𝑟((𝔒

𝛾)2𝑦3),                                                                                                         (21) 

by the assumption  

(𝔒𝛾𝑝)(𝔒𝛾𝑦1)
𝜎+(𝔒𝛾𝑞)(𝔒𝛾𝑦2)

𝜎+(𝔒𝛾𝑟)(𝔒𝛾𝑦3)
𝜎=𝜅1𝑝(𝔒

𝛾𝑦1)
𝜎+𝜅1𝑞(𝔒

𝛾𝑦2)
𝜎+𝜅1𝑟(𝔒

𝛾𝑦3)
𝜎 .                             (22) 

The third order proportional derivative of  is 

(𝔒𝛾)3𝑦 = 𝔒𝛾(𝑝(𝔒𝛾)2𝑦1) + 𝔒
𝛾(𝑞(𝔒𝛾)2𝑦2) + 𝔒

𝛾(𝑟(𝔒𝛾)2𝑦3) 

=  𝑝((𝔒𝛾)3𝑦1)+(𝔒
𝛾𝑝)((𝔒𝛾)2𝑦1)

𝜎 − 𝜅1𝑝((𝔒
𝛾)2𝑦1)

𝜎+𝑞((𝔒𝛾)3𝑦2)+(𝔒
𝛾𝑞)((𝔒𝛾)2𝑦2)

𝜎 

−𝜅1𝑞((𝔒
𝛾)2𝑦2)

𝜎 + 𝑟((𝔒𝛾)3𝑦3) + (𝔒
𝛾𝑟)((𝔒𝛾)2𝑦3)

𝜎 − 𝜅1𝑟((𝔒
𝛾)2𝑦3)

𝜎.                                                             (23) 

If the formulae (18), (19), (21), and (23) are inserted in the Eq. (15), accounting for the assumptions of (20), and 

(22), the equation  

(𝔒𝛾)3𝑦+𝑎(𝑡)(𝔒𝛾)2𝑦+𝑏(𝑡)(𝔒𝛾𝑦)+𝑐(𝑡)𝑦 = 𝑝(𝑡)[(𝔒𝛾)3𝑦1+𝑎(𝑡)(𝔒
𝛾)2𝑦1+𝑏(𝑡)(𝔒

𝛾𝑦1)+𝑐(𝑡)𝑦1] 

                                                                          +𝑞(𝑡)[(𝔒𝛾)3𝑦2+𝑎(𝑡)(𝔒
𝛾)2𝑦2+𝑏(𝑡)(𝔒

𝛾𝑦2)+𝑐(𝑡)𝑦2] 

                                                                          +𝑟(𝑡)[(𝔒𝛾)3𝑦3+𝑎(𝑡)(𝔒
𝛾)2𝑦3+𝑏(𝑡)(𝔒

𝛾𝑦3)+𝑐(𝑡)𝑦3] 

                                                                          +(𝔒𝛾𝑝)((𝔒𝛾)2𝑦1)
𝜎 − 𝜅1𝑝((𝔒

𝛾)2𝑦1)
𝜎 + (𝔒𝛾𝑞)((𝔒𝛾)2𝑦2)

𝜎 

                                                                          −𝜅1𝑞((𝔒
𝛾)2𝑦2)

𝜎 + (𝔒𝛾𝑟)((𝔒𝛾)2𝑦3)
𝜎 − 𝜅1𝑟((𝔒

𝛾)2𝑦3)
𝜎 

                                                                          = 𝐹(𝑡), 

is discovered. We have recently found the system 

(𝔒𝛾𝑝)𝑦1
𝜎 + (𝔒𝛾𝑞)𝑦2

𝜎 + (𝔒𝛾𝑟)𝑦3
𝜎 =  𝜅1𝑝𝑦1

𝜎 + 𝜅1𝑞𝑦2
𝜎 + 𝜅1𝑟𝑦3

𝜎 , 

(𝔒𝛾𝑝)(𝔒𝛾𝑦1)
𝜎 + (𝔒𝛾𝑞)(𝔒𝛾𝑦2)

𝜎 + (𝔒𝛾𝑟)(𝔒𝛾𝑦3)
𝜎 =  𝜅1𝑝(𝔒

𝛾𝑦1)
𝜎 + 𝜅1𝑞(𝔒

𝛾𝑦2)
𝜎 + 𝜅1𝑟(𝔒

𝛾𝑦3)
𝜎 , 

(𝔒𝛾𝑝)((𝔒𝛾)2𝑦1)
𝜎 + (𝔒𝛾𝑞)((𝔒𝛾)2𝑦2)

𝜎 + (𝔒𝛾𝑟)((𝔒𝛾)2𝑦3)
𝜎 = 

                                                              = 𝜅1𝑝((𝔒
𝛾)2𝑦1)

𝜎 + 𝜅1𝑞((𝔒
𝛾)2𝑦2)

𝜎 + 𝜅1𝑟((𝔒
𝛾)2𝑦3)

𝜎 + 𝐹(𝑡). 

We derive  

{
  
 

  
 𝔒𝛾𝑝(𝑡) = 𝜅1(𝛼, 𝑡)𝑝(𝑡)+𝐹(𝑡)

𝑦2
𝜎(𝑡)(𝔒𝛾𝑦3)

𝜎 − 𝑦3
𝜎(𝑡)(𝔒𝛾𝑦2)

𝜎

(𝑊(𝑦1 , 𝑦2, 𝑦3))
𝜎(𝑡)

,

𝔒𝛾𝑞(𝑡) = 𝜅1(𝛼, 𝑡)𝑞(𝑡) − 𝐹(𝑡)
𝑦1
𝜎(𝑡)(𝔒𝛾𝑦3)

𝜎 − 𝑦3
𝜎(𝑡)(𝔒𝛾𝑦1)

𝜎

(𝑊(𝑦1, 𝑦2, 𝑦3))
𝜎(𝑡)

,   

𝔒𝛾𝑟(𝑡) = 𝜅1(𝛼, 𝑡)𝑟(𝑡) + 𝐹(𝑡)
𝑦1
𝜎(𝑡)(𝔒𝛾𝑦2)

𝜎 − 𝑦2
𝜎(𝑡)(𝔒𝛾𝑦1)

𝜎

(𝑊(𝑦1, 𝑦2, 𝑦3))
𝜎(𝑡)

,   𝑡 ∈ 𝕋𝑘
2
,
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from the previous system. 

{
 
 
 

 
 
 𝑝(𝑡) = �̃�𝜅1(𝑡, 𝑡0) + ∫ 𝐹(𝑠)

𝑦2
𝜎(𝑠)(𝔒𝛾𝑦3)

𝜎(𝑠)−𝑦3
𝜎(𝑠)(𝔒𝛾𝑦2)

𝜎(𝑠)

(𝑊(𝑦1, 𝑦2,𝑦3))
𝜎(𝑠)

�̃�0(𝜎(𝑠), 𝑡)𝛥𝛾,𝑡𝑠
𝑡

𝑡0

,

𝑞(𝑡) = �̃�𝜅1(𝑡, 𝑡0) − ∫ 𝐹(𝑠)
𝑦1
𝜎(𝑠)(𝔒𝛾𝑦3)

𝜎(𝑠)−𝑦3
𝜎(𝑠)(𝔒𝛾𝑦1)

𝜎(𝑠)

(𝑊(𝑦1, 𝑦2,𝑦3))
𝜎(𝑠)

�̃�0(𝜎(𝑠), 𝑡)𝛥𝛾,𝑡𝑠
𝑡

𝑡0

,   

𝑟(𝑡) = �̃�𝜅1(𝑡, 𝑡0) + ∫ 𝐹(𝑠)
𝑦1
𝜎(𝑠)(𝔒𝛾𝑦2)

𝜎(𝑠)−𝑦2
𝜎(𝑠)(𝔒𝛾𝑦1)

𝜎(𝑠)

(𝑊(𝑦1, 𝑦2,𝑦3))
𝜎(𝑠)

�̃�0(𝜎(𝑠), 𝑡)𝛥𝛾,𝑡𝑠
𝑡

𝑡0

,   𝑡 ∈ 𝕋𝑘
2
,

 

functions are identified using the formula (12). As a result,  

𝑦(𝑡)=𝑐1𝑦1(𝑡)+𝑐2𝑦2(𝑡)+𝑐3𝑦3(𝑡) 

      +(�̃�𝜅1(𝑡, 𝑡0) + ∫ 𝐹(𝑠)
𝑦2
𝜎(𝑠)(𝔒𝛾𝑦3)

𝜎(𝑠)−𝑦3
𝜎(𝑠)(𝔒𝛾𝑦2)

𝜎(𝑠)

(𝑊(𝑦1, 𝑦2,𝑦3))
𝜎(𝑠)

�̃�0(𝜎(𝑠), 𝑡)𝛥𝛾,𝑡𝑠
𝑡

𝑡0

)𝑦1(𝑡) 

     +(�̃�𝜅1(𝑡, 𝑡0) − ∫ 𝐹(𝑠)
𝑦1
𝜎(𝑠)(𝔒𝛾𝑦3)

𝜎(𝑠)−𝑦3
𝜎(𝑠)(𝔒𝛾𝑦1)

𝜎(𝑠)

(𝑊(𝑦1, 𝑦2,𝑦3))
𝜎(𝑠)

�̃�0(𝜎(𝑠), 𝑡)𝛥𝛾,𝑡𝑠
𝑡

𝑡0

)𝑦2(𝑡) 

     +(�̃�𝜅1(𝑡, 𝑡0) + ∫ 𝐹(𝑠)
𝑦1
𝜎(𝑠)(𝔒𝛾𝑦2)

𝜎(𝑠)−𝑦2
𝜎(𝑠)(𝔒𝛾𝑦1)

𝜎(𝑠)

(𝑊(𝑦1, 𝑦2,𝑦3))
𝜎
(𝑠)

�̃�0(𝜎(𝑠), 𝑡)𝛥𝛾,𝑡𝑠
𝑡

𝑡0

)𝑦3(𝑡), 𝑡 ∈ 𝕋
𝑘2 , 

is the Eq. (15)'s general solution. 

 

Theorem 19 While 𝑦1 and 𝑦2 are the solutions of 

                                        (𝔒𝛾)2𝑦 + 𝑎(𝑡)𝔒𝛾𝑦 + 𝑏(𝑡)𝑦 = 0,   𝑡 ∈ 𝕋𝑘
2
,                                      

where 𝑎, 𝑏 ∈ 𝐶𝑟𝑑(𝕋), 

                                        𝑊𝜎(𝑦1, 𝑦2) = [(1 −
𝜇𝜅1

𝜅0
) (1 −

𝜇𝜅1

𝜅0
−

𝑎𝜇

𝜅0
) +

𝑏𝜇2

𝜅0
2 ]𝑊(𝑦1, 𝑦2),                                               (24) 

is provided.     

Proof    Given that  

𝑊(𝑦1, 𝑦2)= |
𝑦1 𝑦2
𝔒𝛾𝑦1 𝔒𝛾𝑦2

| = 𝑦1𝔒
𝛾𝑦2  −  𝑦2𝔒

𝛾𝑦1 ,       

according to the Wronskian definition for two solutions, 

𝑊𝜎(𝑦1, 𝑦2)= |
𝑦1
𝜎 𝑦2

𝜎

(𝔒𝛾𝑦1)
𝜎 (𝔒𝛾𝑦2)

𝜎| =𝑦1
𝜎(𝔒𝛾𝑦2)

𝜎 − 𝑦2
𝜎(𝔒𝛾𝑦1)

𝜎, 

and  

ℎ𝜎=
𝜇𝔒𝜸ℎ + 𝜅0ℎ − 𝜅1𝜇ℎ

𝜅0
=ℎ +

𝜇

𝜅0
(𝔒𝛾ℎ − 𝜅1ℎ),                                     

it is derived that  

𝑊𝜎(𝑦1 , 𝑦2)=𝑦1
𝜎 (𝔒𝛾𝑦2 +  

𝜇

𝜅0
((𝔒𝛾)2𝑦2  −  𝜅1𝔒

𝛾𝑦2)) − 𝑦2
𝜎 (𝔒𝛾𝑦1 +

𝜇

𝜅0
((𝔒𝛾)2𝑦1 − 𝜅1𝔒

𝛾𝑦1)) 

= (1 −
𝜇𝜅1
𝜅0
) (𝑦1

𝜎𝔒𝛾𝑦2 − 𝑦2
𝜎𝔒𝛾𝑦1) +

𝜇

𝜅0
(𝑦1

𝜎(𝔒𝛾)2𝑦2 − 𝑦2
𝜎(𝔒𝛾)2𝑦1). 

Given that  
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  |
𝑦1
𝜎 𝑦2

𝜎

𝔒𝛾𝑦1 𝔒𝛾𝑦2
| = (

𝜅0 − 𝜅1𝜇

𝜅0
)𝑊(𝑦1, 𝑦2),        𝔒

𝛾𝑊(𝑦1, 𝑦2) = |
𝑦1
𝜎 𝑦2

𝜎

(𝔒𝛾)2𝑦1 (𝔒𝛾)2𝑦2
| −

𝜅1(𝜅0−𝜇𝜅1)

𝜅0
𝑊(𝑦1, 𝑦2) ,  

([33], theorem 7.1.8, 7.1.10) in this situation,  

𝑊𝜎(𝑦1, 𝑦2) = (1 −
𝜇𝜅1

𝜅0
)
2

𝑊(𝑦1, 𝑦2) +
𝜇

𝜅0
(𝔒𝛾𝑊(𝑦1, 𝑦2) +

𝜅1(𝜅0−𝜇𝜅1)

𝜅0
𝑊(𝑦1, 𝑦2)).   

is the outcome. On the other hand, according to ([33], theorem 7.1.12) since 

𝔒𝛾𝑊(𝑦1, 𝑦2) = −(
a(𝜅0 − 𝜇𝜅1)

𝜅0
+
𝜅1(𝜅0 − 𝜇𝜅1)

𝜅0
−
𝑏𝜇

𝜅0
)𝑊(𝑦1, 𝑦2),     

the eventual result is  

𝑊𝜎(𝑦1, 𝑦2)= [
(𝜅0 − 𝜇𝜅1)(𝜅0 − 𝜇𝜅1 − 𝑎𝜇) + b𝜇

2

𝜅0
2

]𝑊(𝑦1, 𝑦2) 

                                                                          = [(1 −
𝜇𝜅1

𝜅0
) (1 −

𝜇𝜅1

𝜅0
−

𝑎𝜇

𝜅0
) +

𝑏𝜇2

𝜅0
2 ]𝑊(𝑦1 , 𝑦2). 

 

Example 20 Assume that 𝕋 = ℤ, 𝜅1(𝛾, 𝑡) = (1 − 𝛾)𝑡
2𝛾, 𝜅0(𝛾, 𝑡) = 𝛾𝑡

2(1−𝛾), 𝛾 ∈ (0,  1], 𝑡 ∈ 𝕋. Take into 

account the following differential equation 

                                                              (𝔒
1

3)
3

𝑦 − 𝔒
1

3y=2𝑡.                                                                                (25) 

Firstly, we will find the solution of the corresponding homogeneous equation of Eq. (25) 

                                                               (𝔒
1

3)
3

𝑦 − 𝔒
1

3y=0,                                                                                 (26) 

by using the method in Anderson & Georgiev (2020). The auxiliary formula for (26) is  

                                                                                 𝜆3 − 𝜆 = 0,                                                                          (27) 

and from here the roots are easily found as  𝜆1 = 0, 𝜆2 = −1, 𝜆3 = 1.  

We may reformat Eq. (26) as follows: 

 

                                                                       𝔒
1

3 (𝔒
1

3 + 1) (𝔒
1

3 − 1) = 0.                                                         (28) 

Taking  

                                                                        (𝔒
1

3 + 1) (𝔒
1

3 − 1) 𝑦 = 𝑦1 ,                                                         (29) 

we form 

𝔒
1
3𝑦1 = 0, 

and from theorem 13, the solution of this equation is 

                                                                               𝑦1(𝑡) = 𝑐1 �̃�0(𝑡, 𝑡0),                                                              (30) 

 

where 𝑐1 is a constant. Now we get 

                                                                              (𝔒
1

3 − 1) 𝑦 = 𝑦2,                                                                   (31) 

 

and from Eq. (28) we form 

                                                                           (𝔒
1

3 + 1) 𝑦2 = 𝑦1(𝑡),                                                               (32) 

or  

                                                                              𝔒
1

3𝑦2 = −𝑦2 + 𝑦1(𝑡),  
and using theorem (13), we find its solution as  
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                                               𝑦2(𝑡)=𝑐2�̃�−1(𝑡, 𝑡0)+∫ 𝑦1(𝜏)�̃�𝑔1(𝜏 + 1,𝑡)𝛥𝟏
𝟑

𝜏 ,
𝑡

𝑡0

 𝑡 ∈ 𝕋𝑘,                    (33) 

where 𝑔1 =
(−1−

2

3
𝑡
2
3)(

2

3
𝑡
2
3−

1

3
𝑡
4
3)

1

3
𝑡
4
3−1−

2

3
𝑡
2
3

  and 𝑐2 is a constant. From Eq. (31) considering the formula (33) and theorem (13)  

it can be easily obtained that 

                                                 𝑦(𝑡)=𝑐3�̃�1(𝑡, 𝑡0)+∫ 𝑦2(𝜏)�̃�𝑔2(𝜏 + 1,𝑡)𝛥1
3

𝜏 ,
𝑡

𝑡0

 𝑡 ∈ 𝕋𝑘,                     (34) 

where 𝑔2 =
(1−

2

3
𝑡
2
3)(

2

3
𝑡
2
3−

1

3
𝑡
4
3)

1

3
𝑡
4
3+1−

2

3
𝑡
2
3

  and 𝑐3 is a constant. If we substitute the solutions (30) and (33) in the solution (34), 

we obtain the solution of the homogeneous Eq. (26) as 

𝑦(𝑡)=𝑐1∫ ∫ �̃�0(𝜏, 𝑡0)�̃�𝑔1(𝜏 + 1,𝑡)�̃�𝑔2(𝑠 + 1,𝑡)𝛥1
3
𝜏𝛥1

3
𝑠 + 𝑐2∫ �̃�−1(𝜏, 𝑡0)�̃�𝑔2(𝑠 + 1,𝑡)𝛥1

3
𝜏 + 𝑐3�̃�1(𝑡, 𝑡0).

𝑡

𝑡0

𝑠

𝑡0

𝑡

𝑡0

 

Thus if we compare the formula (17), we discovered that  

𝑦1(𝑡) = ∫ ∫ �̃�0(𝜏, 𝑡0)�̃�𝑔1(𝜏 + 1,𝑡)�̃�𝑔2(𝑠 + 1,𝑡)𝛥1
3
𝜏𝛥1

3
𝑠,

𝑠

𝑡0

𝑡

𝑡0

 

𝑦2(𝑡) = ∫ �̃�−1(𝜏, 𝑡0)�̃�𝑔2(𝑠 + 1,𝑡)𝛥1
3
𝜏,  

𝑡

𝑡0

 

𝑦3(𝑡) = �̃�1(𝑡, 𝑡0).  
So, it is possible to find the general solution of the given problem by while keeping in mind that these formulae 

and F(t) = 2t in formula (17): 

𝑦(𝑡)=𝑐1𝑦1(𝑡)+𝑐2𝑦2(𝑡) + 𝑐3𝑦3(𝑡) 

       +(�̃�
2

3
𝑡
2
3
(𝑡, 𝑡0)+∫ 2𝑠

𝑦2(𝑠+1)𝔒
1
3𝑦3(𝑠+1)−𝑦3(𝑠+1)𝔒

1
3𝑦2(𝑠+1)

𝑊(𝑦1, 𝑦2,𝑦3)(𝑠+1)
�̃�0(𝑠 + 1, 𝑡)𝛥1

3
,𝑡
𝑠

𝑡

𝑡0

)𝑦1(𝑡) 

       +(�̃�
2

3
𝑡
2
3
(𝑡, 𝑡0) −∫ 2𝑠

𝑦1(𝑠+1)𝔒
1
3𝑦3(𝑠+1)−𝑦3(𝑠+1)𝔒

1
3𝑦1(𝑠+1)

𝑊(𝑦1, 𝑦2,𝑦3)(𝑠+1)
�̃�0(𝑠 + 1, 𝑡)𝛥1

3
,𝑡
𝑠

𝑡

𝑡0

)𝑦2(𝑡) 

       +(�̃�
2

3
𝑡
2
3
(𝑡, 𝑡0)+∫ 2𝑠

𝑦1(𝑠+1)𝔒
1
3𝑦2(𝑠+1)−𝑦2(𝑠+1)𝔒

1
3𝑦1(𝑠+1)

𝑊(𝑦1, 𝑦2,𝑦3)(𝑠+1)
�̃�0(𝑠 + 1, 𝑡)𝛥1

3
,𝑡
𝑠

𝑡

𝑡0

)𝑦3(𝑡).        

 

4. Conclusion 
 

The variation of parameters was examined using the proportional derivative as a general example of a 

conformable derivative for the third-order linear nonhomogeneous dynamic equation, and an example was given 

on time scales with the special choice of the functions 𝜅0(𝛾, 𝑡) and 𝜅1(𝛾, 𝑡). 
 

Acknowledgements: This research is  part of the second author’s master’s thesis, which was carried out at Firat 

University, Türkiye. 

 

References 

 

1. Abdeljewad, T. (2015). On conformable fractional calculus. Journal of Computational and Applied 

Mathematics, 279, 57–66.  

2. Agarwal, R., Bohner, M., O'Regan, D. & Peterson, A. (2002). Dynamic equations on time scales: a 

survey. Journal of Computational and Applied Mathematics, 141(1-2), 1-26.  



GULSEN et al.                                                        Bartın University International Journal of Natural and Applied Sciences  

JONAS, 2023, 6(2): 135-144 
 

 144 

 

3. Anderson, D.R. & Georgiev, S.G. (2020). Conformable Dynamic Equations on Time Scales. Chapman and 

Hall/CRC. 

4. Anderson, D.R. &  Ulness, D.J. (2015). Newly defined conformable derivatives. Advances in Dynamical       

Systems and Applications, 10(2), 109-137. 

5. Aulbach, B. & Hilger. S. (1990). A unified approach to continuous and discrete Dynamics. in: Qualitative 

Theory of Differential Equations (Szeged, 1988), 37–56, Colloq. Math. Soc. János Bolyai, 53 North-Holland, 

Amsterdam. 

6. Benkhettou, N., Brito da Cruz, A. M. C. & Torres, D. F. M. (2015). A fractional calculus on arbitrary time 

scales: Fractional differentiation and fractional integration. Signal Processing, 107, 230– 237. 

7. Benkhettou, N., Hassani, S. & Torres, D. F. M. (2016). A conformable fractional calculus on arbitrary time 

scales. Journal of King Saud University (Science), 28(1), 93-98. 

8. Bohner, M. & Peterson, A. (2001). Dynamic equations on time scales, An introduction with applications. 

Boston, MA: Birkhauser. 

9. Bohner, M. & Peterson, A. (2004). Advances in Dynamic Equations on Time Scales. Boston: Birkhauser.  

10. Bohner, M. & Svetlin, G. (2016). Multivariable dynamic calculus on time scales. Cham: Springer. 

11. Gulsen, T., Yilmaz, E. & Goktas, S. (2017). Conformable fractional Dirac system on time scales. Journal of 

Inequalities and Applications, 2017(1), 161. 

12. Gülşen, T., Yilmaz, E. & Kemaloğlu, H. (2018). Conformable fractional Sturm-Liouville equation and some 

existence results on time scales. Turkish Journal of Mathematics, 42(3), 1348-1360. 

13. Hilger, S. (1990). Analysis on measure chains a unified approach to continuous and discrete calculus. Results 

in Mathematics, 18(1). 

14. Katugampola, U. (2014). A new fractional derivative with classical properties, arXiv:1410.6535v2. 

15. Khalil, R., Horani, M. Al., Yousef, A. & Sababheh, M. (2014). A new definition of fractional derivative. 

Journal of Computational and Applied Mathematics, 264, 57–66.  

16. Li, Y., Ang, K. H. & Chong, G. C. (2006). PID control system analysis and design. IEEE Control Systems 

Magazine, 26(1), 32-41. 

17. Ortigueira, M. D. & Machado, J. T. (2015). What is a fractional derivative?. Journal of Computational 

Physics, 293, 4-13. 

18. Segi Rahmat, M. R. (2019). A new definition of conformable fractional derivative on arbitrary time 

scales. Advances in Difference Equations, 2019 (1), 1-16. 

19. Yilmaz, E., Gulsen, T. & Panakhov, E. S. (2022). Existence Results for a Conformable Type Dirac System 

on Time Scales in Quantum Physics, Applied and Computational Mathematics an International 

Journal,  21(3), 279-291. 

 

 


