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• The scope of this study is to estimate reliability in a multicomponent stress-strength model. 
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• Both a simulation investigation and an application to real data are considered. 
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Abstract 

In this study, we analyze a multicomponent system with v independent and identical strength 

components X1,…, Xv and each of these components is exposed to a common random stress Y. 

The system is considered to be operating only if at least u out of v (1 u  v) strength variables 

exceed the random stress. The estimate of the system reliability is investigated, assuming the 

strength and stress random variables follow the exponentiated exponential distribution having 

different shape parameters. The maximum likelihood estimator for the system reliability is 

derived from ranked set sampling (RSS), neoteric RSS (NRSS), and median RSS (MRSS). Some 

accuracy measurements, such as mean squared errors and efficiencies, are used to examine the 

behaviour of various estimates. Simulation studies demonstrate that the NRSS scheme's reliability 

estimates are chosen above those of the others under the RSS and MRSS schemes in the majority 

of situations. Theoretical research is explained through real data analysis.  
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1. INTRODUCTION 

 

For predicting the population mean, Ref. [1] advised using ranked set sampling (RSS) instead of employing 

ordinary simple random sampling (SRS) to get a more informative sample. In this context, a limited number 

of elected units can be ranked by either the research variable or an auxiliary variable. RSS is used in fields 

like environmental management, ecology, sociology, and agriculture for a given unit when an accurate 

sample measurement is challenging, costly, or time-consuming. Several authors have proposed a number of 

RSS enhancements. Reference [2], for example, said that in comparison to SRS, the RSS mean is a more 

accurate and unbiased estimate of the population mean. The RSS's mathematical underpinnings were created 

in [3], which demonstrated that this sampling technique yields an effective estimate of the population mean. 

The procedure for enrolling a sample in RSS is described as follows: 

 

a) Specify the intended population into n units of size n by distributing n2 randomly picked units. 

Without any prior knowledge of the variable of interest's values. 

b) The units in each set can be ranked visually or through an auxiliary variable.  

c) The lowest ranked unit from the first set, the second-smallest ranked unit from the second set, and 

so on until the biggest ranked unit from the last set should be used to choose a sample for actual 

quantification. 

http://dergipark.gov.tr/gujs
http://orcid.org/0000-0003-4442-8458
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d) To create a sample with a size of n* = nt for the real measurement, iterate the aforementioned 

procedures 𝑡 times. 

 

For more references on the RSS method and its mean estimators, see [4-6]. Reference [7] proposed median 

(MRSS) as an RSS adaptation to minimize RSS efficiency loss owing to ranking errors increase the 

population mean estimator's effectiveness. The following is an explanation of the MRSS technique. 

 

a) Divide n2 randomly collected units from the intended population into n sets, each with a size of n, without 

any prior knowledge of the variable of interest's values. 

b) The units in each set can be assumed to be ranked visually or through an auxiliary variable. 

c) Elect the ( )1 2
th

n +    least rank unit to every for valid measurement if n is odd. 

d) If n is even; take ( )2
th

n  least ranked unit from the first 2n samples and the ( )1 2
th

n +    smallest ranked 

unit from the second 2n  samples for the measurement. 

e) Repeating the preceding procedure t times yields a total sample of size n*=nt. 

 

Reference [8] presented the neoteric RSS (NRSS) technique, which differs from the original RSS approach. 

In comparison to the SRS and RSS procedures, it has been found that this method produces more precise 

population mean and variance estimators. Below is a summary of the NRSS system: 

a) Specify n2 randomly elected units of the proposed population and score the sample units using the 

following principles: 

b) Elect the [ ( 1) ]thJ p n+ −  ranked unit for p=1,…,n, where ( )2J n=  and ( )( )2 2J n= +  if p is even and 

odd respectively for p=1,…,n. 

c) By repeating the previous process t times, a final sample size of n*=nt is obtained. 

 

The superiority of RSS and its variations in estimating a wide range of population metrics has been 

demonstrated in several investigations. Reference [9] used an extreme RSS approach to test for exponentiated 

Pareto distribution. Reference [10] used RSS to develop  parameter estimators for the Zubair Lomax 

distribution. The inverse Weibull distribution parameters were estimated and the likelihood function (LF)was 

derived via the NRSS in [11]. Reference [12] presented and explored parameter estimators for the RSS 

scheme's two-parameter inverted Topp-Leone distribution. The scale family of distributions' maximum 

likelihood (ML) estimator and some RSS techniques were studied in [13]. Reference [14] considered an 

application to real data, it was suggested to use RSS to enhance estimate of the inverted Kumaraswamy 

distribution parameters. 

 

In its most basic form, the stress-strength (SS) model defines component reliability as the probability that the 

unit's strength (X) exceeds the stress (Y) imposed on it. The expression R=P(Y<X) represents the SS model, 

having many applications in physics, civil, mechanical, and aeronautical engineering, where R is the 

reliability parameter. Reference [15] was the first to propose the SS model. It's been widely employed in a 

variety of fields since then. Several studies, however, have looked at statistical inferences regarding the SS 

reliability (SSR) model using the RSS approach and its adaptations (see, for example [16-22]).  

 

A multi-component stress-strength (MSS) framework involves v strength elements (ingredients), X1, 

X2,…,Xv; where v are identically and independent distributed (iid) random variables, and each component 

(ingredient) is exposed to a random stress Y. Only if u out of v is such that (u < v) strengths withstand the 

stress, is the system considered alive. Assume X1, X2, …,Xv are iid with the common cumulative distribution 

function (CDF) F(x). Suppose that the CDF of a random stress Y, say G(y). The reliability from MSS 

presented in [23] is assigned by: 

 

 , 1 2
( , ,... )

u v v
P at least u of the v X X X exceed Y=

 

( ) ( ) ( )
( )

1 .
v

v i i

i u

v
F y F y dG y

i


−

= −

 
= −        

 
   

(1) 
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Recently, inference from the MSS reliability (MSSR) model has been evaluated by several researchers. For 

example, [24] discussed the MSSR for the exponentiated Pareto distribution. Reference [25] calculated 

MSSR using the ML method, assuming a Burr-XII distribution. Reference [26] estimated the parameters of 

the exponentiated Weibull distribution for the MSSR by using ML estimation. Reference [27] provided the 

Bayesian and non-Bayesian estimators of MSSR by assuming the Kumaraswamy distribution. Reference 

[28] studied the MSSR for the Weibull distribution based on records. Reference [29] proposed classical and 

Bayesian estimation of MSSR for an exponentiated Pareto distribution. The estimation of an MSSR from a 

generalised inverted exponential distribution using RSS was discussed in [30]. Reference [31] looked at RSS-

based Bayesian system reliability estimation for the inverted Topp-Leone distribution. 

 

There are no studies in the literature that deal with estimating ,u v  using MRSS and NRSS. The stress and 

strengths random variables are assumed to have an exponentiated exponential distribution (EED), this is due 

to its importance and application in a variety of fields. Expression of ,u v  is derived when the strengths X1, 

X2,…, Xv ~ EED( , ),   and stress Y ~ EED( , ),   where   is a scale parameter,   and   are shape 

parameters. The ML estimator of ,u v is derived when the strengths and stress have the same sampling design. 

Simulation studies are carried out, and real data are offered as an example, in order to evaluate the 

performances of various estimators. 

 

The following sections are planned as; expression of MSSR model is discussed in section 2. Using RSS, the 

estimator of ,u v  to be found in section 3. From the NRSS design, section 4 obtains the ML estimator of 

,
.

u v  Section 5 provides the ML estimator of ,u v  for odd and even set sizes using MRSS. Section 6 deals 

with the simulation and analysis of actual data procedures followed by a conclusion in section 7. 

 

2. MODEL SPECIFICATION 

 

In this section, we display the model specification that is used in this study and the reliability of the MSS for 

the EED. 

 

The EED, a really appealing exponential distribution generalisation, introduced in [32] has received 

widespread attention. It is interesting and widely utilised in the analysis of lifetime or survival statistics. 

Given that scale parameter 0,   and shape parameter 0,   The EED’s CDF and the probability density 

function (PDF) are, respectively, provided by: 

 

( ) (1 ) ; 0,xF x e     x −= −   (2) 

1( ) (1 ) ; 0.x xf x e e     x   − − −= −   (3) 

 

Several characteristics of the EED have been thoroughly investigated, for example [32-34], using several 

estimating approaches. Based on records, Reference [35] examined expressions and recurrence relation 

moments for EED. Reference [36] examined the Bayesian and traditional estimators of SSR for EED from 

SRS. Reference [37] handled the problem of estimating SSR from lower record values in EED. The EED has 

a wide range of applications (see [38], and [39]). Reference [40] recommended an MSSR estimator of EED 

that may be used to data out of an airplane's air cooling system. Estimating reliability in progressive-censored 

samples has been outlined in [41] with application to carbon fiber data. Reference [42] proposed an SSR 

estimator under the lower record RSS scheme of EED with application to rocket-motor data. Reference [43] 

handled with estimating SSR for EED using RSS. 

 

Assume X1, X2,…, Xv are the structural strength components that are overloaded by the stress Y. Let X1, X2,…, 

Xv are random variables have EED ( , )   and Y  another random variable has EED ( , )  are independent. 

Expression of ,u v can be obtained using Equation (1) to Equation (3) as: 
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( ) ( )
( ) 1

,

0

1 1 1 .
v i

v i
y y y

u v

i u

v
e e e dy

i

  
  


− + −

− − −

=

   = − − −     
   

Let ( ) ( )
1

1 1 ,y yt e t e
 − −= − → = −      Then ,u v  can be written as  

( )

( ) ( )
( )

1 1

,

0 0

1 1 ; ,
i v iv v

i v i
L L

u v

i u i u

v v
t t dt t t dt L

i i

 
 





−
−

= =

      = − = − =      
      

  
 

Let ( )
1

11
1 1

,L L L Lz t dz Lt dt z t z dz dt
L

−
−= → = = → =

 

( ) ( )
1 1

1

,

0

1 1 1
1 , 1 .

v v
v i i

L
u v

i u i u

v v
z z dz v i i

i iL L L


 
− + − 

 

= =

     
= − = + − +     

    
 

 

Hence, ,u v  takes the following form 

( )

1

,

0

1 ! 1
,

!

iv

u v

i u j

v
v j

L v i L

−

= =

  
= + −  

−   
   (4) 

where v and i are integers. 

3. MSSR ESTIMATOR USING RSS 

 

Herein, the ML approach is used to obtain the MSS system's reliability estimator. The MSSR estimator is 

proposed, claiming that the chosen random variables, both stresses and strengths are dragged from the RSS 

design. 

 

Consider ( ) , 1, , , }1, ,{ i xi c
X X i n c t= =  =  be a chosen RSS from EED~ ( , ),   where n* =ntx, is the sample 

size, n and tx are the set size and cycles number, respectively.  

 

Given ( ) , 1, 2, , , 1, 2 },{ ,j yj b
Y Y j m b t= =  =  be a chosen RSS from EED~ ( , )  , where m*= mty, is the sample 

size, the set size and cycle count are denoted by m and ty. The LF of MSS model under RSS is  

 
1 1

1 1 ( ) ( ) ( ) 2 ( ) ( ) ( )

1 1 1 1

( ) ( ) 1 ( ) 1 ( ) ( ) ( ) ,
yx

tt n m
i n i m j j

i i c i i c i i c j j b j j b j j b

c i b j

l C F x f x F x C F y F y f y
− − − −

= = = =

       = − −        

 where,  
1

1
! ( 1)!( )!C n i n i

−
= − −  and  

1

2
! ( 1)!( )! .C m j m j

−
= − −  Then the log-LF (LLF) is as below: 

 

( ) ( )

1 ( )

1 1

( ) ( )

( )

1 1

ln ln ln ( ) ln(1 (1 ) ) ( 1)(ln(1 ))

( ) ln ( ) ln(1 (1 ) ) ( 1)(ln(1 )) .

x

y

t n
x x
i i c i i c

i i c

c i
t

m
y yj j b j j b

j j b

b j

y

l m n n i e x i e

n m m j e j e

 

 

   

  

− − 

= =

− − 

= =

+

+

  − − − − − −
 

 + − − − − − −
 

+ +

+ +




 

The first derivatives of l1 based on ,   and  are: 

( ) 1( ) ( )

( )
( )1

( )
( ) ( )

1 1

1( ) ( )

( ) ( )

( )

( ) (1 )( 1)ln

( 1) (1 (1 ) )

( 1) ( ) (1 )

( 1) (1 (1

x

x xi i c i i c
t n i i c

i i c

i i cx xi i c i i c
c i

y yj j b j j b

j j b j j b

y j j b

n i x e ei xl n m
x

e e

y j m j y e e

e

  
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



 

 

− − −
 

−
= =

− − −

 − − − +  
= + − −    − − −   

− − −
+ −

− − −



( )
( )

1 1

,
) )

yt m

j j by j j b
b j

y
e

 −
= =

 
 −
 
 



 (5) 

( )

( )1

( )
1 1

ln(1 ) ( )ln
ln(1 ) ,

(1 ) 1

x

xi i c
t n

xi i c

xi i c
c i

n il n
i

e
e

e





  

−


−

− −
= =

   − −    
= + − −   − −    

  (6) 

( )

( )1

( )
1 1

ln ( ) ln(1 )
ln(1 ) .

(1 ) 1

y
yt j j bm

y j j b

y j j b
b j

l m m j
j

e
e

e




  

−
−

− −
= =

   − −
  = + − −

   − −  
  (7) 

. 

. 
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We will have the estimators of ,   and ,  say 
1 1

ˆˆ ,  and 
1
ˆ ,  after equating Equations (5)−(7) by zero and 

solving numerically. Then, utilising the ML approach's invariance feature, the ML estimator of ,u v is 

produced by plugging 
1 1

ˆˆ ,   and 
1

̂  into Equation (4). 

4. MSSR ESTIMATOR USING NRSS 

 

Consider that X = ( )
{ , 1,2,..., ; 1, 2,..., }

q i c x
X i n c t= =  is enrolled in the NRSS from EED ( , ),  where n*= ntx is a 

sample size. Let Y = ( )
{ , 1,2,..., ; 1, 2,..., }

q j b y
Y j m b t= =  be the chosen NRSS from EED ( , ),  where m*= mty is 

a sample size. The LF in this case will be as follows: 
1 1

( ) ( 1) 1 ( ) ( 1) 1

2 3 ( ) ( ) ( 1) 4 ( ) ( ) ( 1)

1 1 1 1 1 1

( ) [ ( ) ( )] ( ) [ ( ) ( )] ,
yx

tt n n m m
q i q i q j q j

q i c q i c q i c q j b q j b q j b

c i i b j j

l C f x F x F x C f y F y F y
+ +

− − − − − −

− −

= = = = = =

  
= − −  

   
     

 where 

1
1

3

1

! ( ( ) ( 1) 1)! ,
n

i

C q i q i

−
+

=

 
= − − − 

 
 q(0) =0, q(n+1)=  +1 ( (0))q

x = − and ( ( 1))
,

q i
x

+
=  2n =

 

and, 

1
1

4

1

! ( ( ) ( 1) 1)! ,
m

j

C q j q j

−
+

=

 
= − − − 

 
 q(0) =0, q(m+1)=  +1 ( (0))q

y = − and ( ( 1))
,

q j
y

+
=  2 .m =

 

The LLF, based on NRSS, is: 

( )    
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1 1 1

1

( ) ( 1) ( ) ( )

1 1 1

ln ln ln ( 1) ln ( ) ln[( ) ( ) ]

ln ln ( ) ln[( ) ( ) ] ( 1) ln ,

x

y

t n n

q i c q i c q i c q i c

c i i

t m m

q j b q j b q j b q j b

b j j

l n H x A i H H

m B j D D D y

 

 

   

   
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−
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 
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 
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where ( )

( )
1 ,q c

q c

x
e
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
−

= − ( ) [ ( ) ( 1) 1],A i q i q i= − − − , 1,i i = − ( )

( )
1 , , 1;q c

q c
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D j je

 

 
−

= − = −  and

( ) [ ( ) ( 1) 1].B j q j q j= − − −  The derivatives of ,   and  are obtained as follows: 
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    (10) 

 

The ML estimators of ,   and  are derived by solving numerically Equation (8), Equation (9) and Equation 

(10) using an iterative method, As a Result, ,u v is obtained using Equation (4). 

 

5. MSSR ESTIMATOR USING MRSS 

 

In this section, the MSSR estimator is addressed when strengths and stress random variables are independent 

EEDs under MRSS. The first estimator is developed when the observed samples of stress and strengths are 

chosen from MRSS for odd set size (MRSSO), while the second estimator is formed when the observed 

samples of stress and strengths are taken from MRSS for even set size (MRSSE). 

 

 



470  Amal HASSAN, Rasha ELSHAARAWY, Heba NAGY/ GU J Sci, 37(1): 465-481 (2024) 

 
 

 

5.1. Estimator under MRSSO 

 

Let ( )
, 1, 2,..., ;{

n xi g c
X X c t== ( )1 2 , 1,2,..., }

th

n
g n i n= + =   and ( )

{ ,
mj g b

Y Y= 1,2,..., ;
y

b t= ( )1 2 ,
th

m
g m= +  

j = 1, 2, ..., ,m are MRSSO observed from EED ( , )   and EED ( , )  , with sample sizes ntx and mty 

respectively, where n and m are the set sizes, tx and ty are the cycles numbers. The LF 
3

l  under the observed 

data is: 

 

( ) ( ) ( ) ( ) ( ) ( )

1 1
1 1

3 5 6

1 1 1 1

( ) 1 ( ) ( ) ( ) 1 ( ) ( ),
n myx

n m

n n n m m m

g gtt n mg g

i g c i g c i g c j g b j g b j g b

c i b j

l C F x F x f x C F y F y f y

− −
− −

= = = =

       = − −
        

 
where, ( )

2

! 1 ! , , .C g n m  
−

= − =  

 

Based on MRSSO, the LLF is 

( ) ( ) 

( )

3 ( ) ( )

1 1

( ) ( ) ( )

1 1

ln ln ln ( 1) ln 1 ( 1 ) ( 1)(ln 1 )

ln ln ( 1) ln 2 ( 1) ln 1 ( 2 ) .

x

n n n

y

m m m

t n

n i g c n i g c i g c
c i
t m

m j g b j g b m j g b

b j

l n g g x

m g y g





     

     



= =



= =

  + + − − + − − 

  + + + − − + − −  




 

 

where, ( )

( )
1 1 ,i g cn

n

x

i g c
e




−
= − and ( )

( )
2 1 .j g bm

m

y

j g b
e




−
= −  The partial derivatives of l3 under ,   and  are 

obtained as follows: 
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1
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
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

=

−

  − −  +
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1 1 ( )

,
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my
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m

y j g bt m
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b j j g b

y

= =

  
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  −
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

 (11) 

( )3

( )

1 1 ( )

( 1) ln( 1 )ln
ln( 1 ) ,

( 1 ) 1

n

n

n

t nx
n i g c

n i g c
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gl n
g






  



−
= =

 −
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  (12) 

( )3

( )

1 1 ( )

( 1) ln( 2 )ln
ln( 2 ) .

( 2 ) 1

y

m

m

m

t m
m j g b

m j g b

b j j g b

gl m
g






  



−
= =

 −
= + − 

 −  
  (13) 

 

Setting (11), (12), and (13) with zero to get the parameter estimators.  Although such estimators produced 

cannot be stated in formal representation, they would be simply built using a numerical algorithm. Finally, 

the estimator of ,u v  is calculated using (4). 

 

5.2. Estimator under MRSSE 

 

Suppose that 
( ) ( ){ , 2 ; 1,2,..., , 1,2,..., }

th

n xi k cn

X X k n c t i n= = = = is the MRSSE observed from EED ( , )  with 

n* = ntx, n is set size and tx being the cycle’s count. Also, let 
( ) ( ){ ; 2

th

mj k bm

Y Y k m= = ; 1,j = 2, ..., , 1, 2,..., }
y

m b t=

is the MRSSE collected from EED ( , )   with m* = mty , m being the set size and ty being the cycle’s count. 

The LF 4
l  under MRSSE is: 
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The LLF, viz MRSSE, is given by:
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Equating Equations (14), (15), and (16) by zero yield the parameter estimators. Due to the fact that the offered 

estimators are not closed structures, they may easily be created by utilising a numerical tool. Accordingly, 

Equation (4) is used to produce the MSSR estimator. 

 

6. NUMERICAL ILLUSTRATION AND DATA ANALYSIS  

 

A simulation is undertaken as a study in this part to illustrate the behaviour of MSSR estimates produced via 

three sampling schemes, namely, RSS, MRSS and NRSS. Also, a real data analysis; for two data sets which 

depict the jute fibres' size, tensile traits, and coefficient of variations in fibre diameter (CVFD) at 10 mm as 

well as 20 mm lengths of gauge; is conducted to support the findings. 

 

6.1. Simulation Study 

 

We created the following simulated computation to explore and evaluate the behaviour of MSSR estimates 

produced via the indicated sampling pattern: 

 

i. Take (n, m) = (2, 2), (3, 3), (4, 4), (5, 5), (6, 6), (7, 7), (8, 8), (9, 9), where n and m are set sizes.  

ii. Take tx= ty = t = 5, where tx and ty are the number of cycles. 

iii. The samples are (n*, m*) = (10, 10), (15, 15), (20, 20), (25, 25), (30, 30), (35, 35), (40, 40), (45, 

45), where n* = ntx =nt, and m*= mty =mt. 

 



472  Amal HASSAN, Rasha ELSHAARAWY, Heba NAGY/ GU J Sci, 37(1): 465-481 (2024) 

 
 

 

iv. The values of parameters at u=1 and v=3 are selected as: ( , )  = (1.5, 1.5), (2, 1.5), (2, 1), (3.5, 

1), and  =1.4, therefore, the exact values of 1,3
= 0.75, 0.8, 0.85 and 0.91 

v. The values of parameters at u=2 and v=4 are selected as: ( , )  = (1.5, 1.5), (2, 1.5), (2, 1), (3.5, 

1), and  =1.4, therefore, the exact values of 2,4
=  0.6, 0.67, 0.76 and 0.85.  

vi. Create 1000 samples from X~EED ( , )  and Y~ EED ( , )  using the specified values of 

parameters. 

vii. The validity of estimates is examined using mean squared error (MSER), absolute bias (AB), and 

relative effectiveness (RE). 

viii. Regarding NRSS and MRSS, the RE of MSSR estimates of RSS, is defined as 

1 , ,
ˆ ˆ( ( )) / ( ( )), ( , ) (1,3), (2,4)

u v RSS RSS u v NRSS NRSS
RE MSE X Y MSE X Y u v=   =

 

2 , ,
ˆ ˆ( ( )) / ( ( )), ( , ) (1,3), (2,4).

u v RSS RSS u v MRSS MRSS
RE MSE X Y MSE X Y u v=   =

 
 

Tables 1–4 show the values of the MSSR estimate's ABs, MSERs, and REs. 

 

Table 1. MSERs of ,
ˆ

u v  and their efficiencies at 1,3 =0.75 and 2,4
0.6=  

t (n,m) 
RSS NRSS MRSS 

1
RE  2

RE  
AB MSER AB MSER AB MSER 

1,3
ˆ  

5 

(2,2) 0.0234 0.0053 0.01066 0.00498 0.0006 0.00515 1.06 1.03 

(3,3) 0.002 0.0038 0.00142 0.00243 0.00127 0.00268 1.56 1.42 

(4,4) 0.0028 0.0018 0.00072 0.00100 0.00055 0.00112 1.80 1.61 

(5,5) 0.0055 0.0013 0.00430 0.00059 0.00304 0.00114 2.20 1.14 

(6,6) 0.0038 0.0009 0.00059 0.00044 0.00059 0.00050 2.05 1.80 

(7,7) 0.0007 0.0005 0.00190 0.00034 0.00067 0.00045 1.47 1.11 

(8,8) 0.0001 0.0004 0.00188 0.00027 0.00054 0.00031 1.48 1.29 

(9,9) 0.0008 0.00039 0.00051 0.00021 0.00340 0.00035 1.86 1.11 

2,4
ˆ  

5 

(2,2) 0.03 0.010 0.01190 0.00977 0.00078 0.00991 1.02 1.01 

(3,3) 0.0003 0.0075 0.00037 0.00498 0.00001 0.00546 1.51 1.37 

(4,4) 0.0053 0.0037 0.00173 0.00208 0.00003 0.00230 1.78 1.61 

(5,5) 0.007 0.0027 0.00578 0.00121 0.00359 0.00233 2.23 1.16 

(6,6) 0.0048 0.0019 0.00055 0.00090 0.00051 0.00103 2.11 1.84 

(7,7) 0.0015 0.0011 0.00250 0.00070 0.00128 0.00094 1.57 1.17 

(8,8) 0.0004 0.0009 0.00253 0.00056 0.00100 0.00065 1.61 1.38 

(9,9) 0.0015 0.0008 0.00088 0.00043 0.00467 0.00071 1.86 1.13 

 

Table 2. MSERs of ,
ˆ

u v  and their efficiencies at 1,3 =0.8 and 2,4
0.67=  

t (n,m) 
RSS NRSS MRSS 

1
RE  2

RE  
AB MSER AB MSER AB MSER 

1,3
ˆ  

5 

(2,2) 0.0019 0.0045 0.0065 0.00404 0.0315 0.00445 1.11 1.01 

(3,3) 0.0001 0.0018 0.0027 0.00115 0.0119 0.00168 1.57 1.07 

(4,4) 0.0046 0.0013 0.0001 0.00071 0.0160 0.00100 1.83 1.30 

(5,5) 0.0027 0.0008 0.0016 0.00043 0.0005 0.00077 1.86 1.04 

(6,6) 0.0047 0.0006 0.0004 0.00034 0.0086 0.00045 1.76 1.33 

(7,7) 0.0026 0.0004 0.0024 0.00028 0.0035 0.00037 1.43 1.08 

(8,8) 0.0024 0.0003 0.0003 0.00019 0.0078 0.00026 1.68 1.23 
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t (n,m) 
RSS NRSS MRSS 

1
RE  

2
RE  

AB MSER AB MSER AB MSER 

(9,9) 0.0019 0.0003 0.0012 0.00014 0.0010 0.00022 2.14 1.36 

2,4
ˆ  

5 

(2,2) 0.0059 0.0099 0.0124 0.00920 0.0444 0.00930 1.08 1.06 

(3,3) 0.0014 0.0041 0.0034 0.00255 0.0191 0.00388 1.61 1.06 

(4,4) 0.0061 0.0029 0.0007 0.00161 0.0235 0.00220 1.80 1.32 

(5,5) 0.0035 0.0020 0.0027 0.00098 0.0002 0.00176 2.04 1.14 

(6,6) 0.0075 0.0014 0.0008 0.00078 0.0127 0.00100 1.79 1.40 

(7,7) 0.0042 0.0010 0.0034 0.00063 0.0055 0.00086 1.59 1.16 

(8,8) 0.0038 0.0007 0.0006 0.00044 0.0116 0.00059 1.59 1.19 

(9,9) 0.0031 0.0006 0.0017 0.00033 0.0014 0.00050 1.82 1.20 

 

Table 3. MSERs of ,
ˆ

u v  and their efficiencies at 1,3 =0.85 and 2,4
0.76=  

t (n,m) 
RSS NRSS MRSS 

1
RE  2

RE  
AB MSER AB MSER AB MSER 

1,3
ˆ  

5 

(2,2) 0.0054 0.00279 0.0122 0.00225 0.0314 0.00272 1.24 1.03 

(3,3) 0.0019 0.00135 0.0006 0.00099 0.0019 0.00107 1.36 1.26 

(4,4) 0.0012 0.00075 0.0025 0.00050 0.0196 0.00065 1.50 1.15 

(5,5) 0.0013 0.00045 0.0014 0.00034 0.0005 0.00042 1.32 1.07 

(6,6) 0.0001 0.00036 0.0006 0.00023 0.0094 0.00031 1.57 1.16 

(7,7) 0.0018 0.00032 0.0011 0.00013 0.0020 0.00024 2.46 1.33 

(8,8) 0.0019 0.00026 0.00008 0.00009 0.0082 0.00015 2.89 1.73 

(9,9) 0.0012 0.00023 0.0007 0.00008 0.0010 0.00019 2.88 1.21 

2,4
ˆ  

5 

(2,2) 0.0068 0.00662 0.0206 0.00564 0.0479 0.00637 1.17 1.04 

(3,3) 0.0021 0.00329 0.0017 0.00245 0.0038 0.00267 1.34 1.23 

(4,4) 0.0015 0.00187 0.0036 0.00125 0.0305 0.00159 1.50 1.18 

(5,5) 0.0024 0.00113 0.0025 0.00086 0.0005 0.00105 1.31 1.08 

(6,6) 0.0004 0.00091 0.0008 0.00058 0.0246 0.00084 1.57 1.08 

(7,7) 0.0030 0.00081 0.0016 0.00033 0.0034 0.0006 2.45 1.35 

(8,8) 0.0031 0.00066 0.00007 0.00024 0.0093 0.00046 2.75 1.43 

(9,9) 0.0018 0.00057 0.0012 0.00021 0.0017 0.00049 2.71 1.16 

 

Table 4. MSERs of ,
ˆ

u v and their efficiencies at 1,3 =0.91 and 2,4
0.85=  

t (n,m) 
RSS NRSS MRSS 

1
RE  2

RE  
AB MSER AB MSER AB MSER 

1,3
ˆ  

5 

(2,2) 0.0006 0.00160 0.00930 0.00138 0.0094 0.00151 1.16 1.06 

(3,3) 0.0038 0.00065 0.00250 0.00051 0.0062 0.00061 1.27 1.07 

(4,4) 0.0006 0.00047 0.00130 0.00024 0.0072 0.00038 1.96 1.24 

(5,5) 0.0010 0.00024 0.00070 0.00015 0.0026 0.00021 1.60 1.14 

(6,6) 0.0008 0.00021 0.00010 0.00008 0.0063 0.00011 2.63 1.91 

(7,7) 0.0024 0.00017 0.00001 0.00006 0.0018 0.00014 2.83 1.21 

(8,8) 0.0009 0.00011 0.00010 0.00005 0.0058 0.00008 2.20 1.38 

(9,9) 0.0006 0.00008 0.00080 0.00003 0.0012 0.00007 2.67 1.14 



474  Amal HASSAN, Rasha ELSHAARAWY, Heba NAGY/ GU J Sci, 37(1): 465-481 (2024) 

 
 

 

t (n,m) 
RSS NRSS MRSS 

1
RE  

2
RE  

AB MSER AB MSER AB MSER 

2,4
ˆ  

5 

(2,2) 0.0019 0.00406 0.0161 0.0038 0.0249 0.00401 1.07 1.01 

(3,3) 0.0067 0.0018 0.0039 0.00137 0.0106 0.00168 1.31 1.07 

(4,4) 0.0013 0.00126 0.0021 0.00065 0.0091 0.00081 1.94 1.56 

(5,5) 0.0016 0.00066 0.0011 0.0004 0.0044 0.00060 1.65 1.10 

(6,6) 0.0014 0.00057 0.0002 0.00023 0.0089 0.00050 2.48 1.14 

(7,7) 0.0041 0.00046 0.00006 0.00018 0.0031 0.00038 2.56 1.21 

(8,8) 0.0015 0.00032 0.00020 0.00015 0.0045 0.00021 2.13 1.52 

(9,9) 0.0010 0.00022 0.00130 0.00009 0.0021 0.00021 2.44 1.05 

 

6.2. Numerical Results   

 

The following are some of the results extracted from Tables 1−4 and Figures 1−10 

▪ For certain sample size values (n*, m*) and real values of ,u v , we conclude that ,
ˆ

u v  it is more 

effective to use NRSS strengths and stress random variables than the alternatives under RSS and 

MRSS (Figures 1, 2 and Tables 1−4). 

▪ As the sample sizes (n*, m*) rise for different set sizes, the MSER of all reliability estimates reduces 

for various approaches, as seen in Figures 1 and 2.  

▪ For each and every set size, the MSER of ,
ˆ

u v  picks the least values using NRSS (Figures 1, 2).  

 

  

Figure 1. MSER of 1,3
ˆ at 1,3 =0.75 Figure 2. MSER of 2,4

ˆ at 2,4 =0.85 

▪ The MSER of ,
ˆ

u v  declines as the value of ,u v  rises in all schemes (Figures 3, 4) and Tables 

1−4). 

  

Figure 3. MSER of 1,3
ˆ  at all true values of 

1,3  based on RSS 

Figure 4. MSER of 2,4
ˆ  at all true values 

of 2,4  based on NRSS 
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▪ The MSER of 1,3
ˆ

 
takes the smallest value compared to 2,4

ˆ  for all values of (n, m) as well as 

sample sizes (n*, m*) (Figures 5, 6). 

  

Figure 5. MSER of 1,3
ˆ  and 2,4

ˆ  for all set 

sizes based on RSS 

Figure 6. MSER of 1,3
ˆ  and 2,4

ˆ  for all set 

sizes based on NRSS 

▪ The MSER of 1,3
ˆ  takes the smallest values compared to 2,4

ˆ  at all true values of ,u v (Figures 

7, 8). 

▪ The MSER of 1,3
ˆ  is smaller than the MSER of 2,4

ˆ  for all exact values of ,u v  for all sample 

sizes at different set sizes.  

 

  

Figure 7. MSER of 1,3
ˆ  and 2,4

ˆ  at set size 

(2, 2) based on RSS 

Figure 8. MSER of 1,3
ˆ  and 2,4

ˆ  at set 

size (5, 5) based on NRSS 

 

▪ The MSSR estimates of ,u v  viz NRSS are preferred over the MSSR estimates of ,u v based on 

RSS strengths and NRSS stress (see for example, Figures 9, 10 and Table 1). 

 

  

Figure 9. RE of 1,3
ˆ at 1,3 =0.75 Figure 10. RE of 2,4

ˆ at 2,4 =0.6 

 

 

 

 



476  Amal HASSAN, Rasha ELSHAARAWY, Heba NAGY/ GU J Sci, 37(1): 465-481 (2024) 

 
 

 

▪ In comparison to estimates made in light of RSS, the MSER of MSSR estimations under MRSS is 

lower. 

▪ The equivalent RSS is less effective than the MSSR estimations under NRSS and MRSS. 

 

6.3. Data Application  

 

Here, we take into account two sets of data and demonstrate every aspect for illustration. The two data 

sets, which reflect CVFD of (5, 10, 15, and 20 mm) gauge lengths of jute fibres, were first published in 

[44], using the same data with sample sizes of n*=m*=30 (see Tables 5, 6). 

 

Table 5 shows the MPa values for the first data set (10 mm) as follows: 

693.73 704.66 323.83 778.17 123.06 637.66 383.43 151.48 108.94 50.16 

671.49 183.16 257.44 727.23 291.27 101.15 376.42 163.40 141.38 700.74 

262.90 353.24 422.11 43.93 590.48 212.13 303.90 506.60 530.55 177.25 

 

Table 6. shows the MPa values for the second data set (20 mm) as follows:  

71.46 419.02 284.64 585.57 456.60 113.85 187.85 688.16 662.66 45.58 

578.62 756.70 594.29 166.49 99.72 707.36 765.14 187.13 145.96 350.70 

547.44 116.99 375.81 581.60 119.86 48.01 200.16 36.75 244.53 83.55 

 

Before continuing, some fundamental data analysis will be performed. The Kolmogorov-Smirnov (K-S) 

test and related P-value (P-V) are used to assess the performance of the adequate model. The K-S distance 

between the empirical and fitted distributions is 0.1012 for the first dataset with P-V = 0.918 and 0.14978 

for the second dataset with P-V = 0.511, demonstrating strong fits. Figures 11 and 12 show the empirical 

survival function (ESF), PP plots and the estimated (PDF, CDF) for the data under consideration. the two 

sets of data may therefore be examined using the EED. 

 

  
Figure 11. The PDF, CDF, and ESF plots of the 

EED for Data 1 

Figure 12. The PDF, CDF, and ESF plots of the 

EED for Data 2 

 

Table 7. MSSR estimate of the data sets 

(n, m) RSS
 

NRSS
 

MRSS
 

1,3  
(2,2) 0.701995 0.937863 0.773591 

(3,3) 0.750732 0.945265 0.925312 

(4,4) 0.846373 0.955738 0.939427 

(5,5) 0.888889 0.969239 0.949332 
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Table 7 shows the MSSR estimates from the EED using a range of n* and m* of sample sizes values, with 

tx =ty = 5 cycles assuming the suggested sampling procedures. The NRSS, MRSS and RSS algorithms are 

generated from Data 1 and 2. The MSSR estimates via the three sampling strategies increase as n* and 

m*increase, for n = m, where tx =ty = 5 as shown in Figure 13. These findings demonstrate that, for large 

set sizes limits, the values of the estimated MSSR of ,u v obtained using NRSS are higher than those 

obtained through RSS and MRSS, which led to the selection of NRSS samples. As a result, the findings in 

this subsection corroborate those in the one before it. 

 

  
Figure 13. The MSSR estimates for the three sampling strategies at various set sizes for 1,3  and 2,4  

 

7. CONCLUSION  

 

The reliability estimation in MSSR, say ,
,

u v  is covered in this paper, when stress and strengths random 

variables from the EED under the RSS, NRSS and MRSS designs. Under the MRSS scheme, we study the 

MSSR estimators in two different cases: odd and even set sizes. Despite the different sampling schemes, 

we execute a numerical analysis to assess the attitude of the different estimators. The study's findings show 

that, in all cases, the MSERs of MSSR estimates depending on NRSS data are lower compared to the 

equivalent in view of RSS and MRSS data. It's also worth noting that MSSR estimates based on MRSS 

are lower than those based on RSS. Hence, compared to the similar ones in RSS, the MSSR estimations 

under NRSS and MRSS are more effective. Also, real data applications illustrate these results. An extended 

study can be done when the observed data from stress and strengths random variables are distinct. In other 

words, the MSSR estimator is considered when the strengths data are derived from NRSS, and the stress 

measurements follow a simple odd/even set size MRSS pattern. The MSSR estimator is also taken into 

consideration when the strength data are produced from RSS and the stress data are presented as MRSS 

utilising an odd/even sizes of the sets. Future research will take into account the inference for MRSS 

reliability when the random variables for stress and strength have distinct distributions. 
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